DSpace Repository

An artificial intelligence proposal to automatic teeth detection and numbering in dental bite-wing radiographs

Show simple item record

dc.contributor.author Yasa, Yasin
dc.contributor.author Celik, Ozer
dc.contributor.author Bayrakdar, Ibrahim Sevki
dc.contributor.author Pekince, Adem
dc.contributor.author Orhan, Kaan
dc.contributor.author Akarsu, Serdar
dc.contributor.author Atasoy, Samet
dc.contributor.author Bilgir, Elif
dc.contributor.author Odabas, Alper
dc.contributor.author Aslan, Ahmet Faruk
dc.date.accessioned 2024-03-26T06:48:20Z
dc.date.available 2024-03-26T06:48:20Z
dc.date.issued 2021
dc.identifier.citation Yasa, Y., Çelik, Ö., Bayrakdar, IS., Pekince, A., Orhan, K., Akarsu, S., Atasoy, S., Bilgir, E., Odabas, A., Aslan, AF. (2021). An artificial intelligence proposal to automatic teeth detection and numbering in dental bite-wing radiographs. Acta Odontol. Scand., 79(4), 275-281. https://doi.org/10.1080/00016357.2020.1840624 en_US
dc.identifier.issn 0001-6357
dc.identifier.issn 1502-3850
dc.identifier.uri http://dx.doi.org/10.1080/00016357.2020.1840624
dc.identifier.uri https://www.webofscience.com/wos/woscc/full-record/WOS:000588525100001
dc.identifier.uri http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/5203
dc.description WoS Categories: Dentistry, Oral Surgery & Medicine en_US
dc.description Web of Science Index: Science Citation Index Expanded (SCI-EXPANDED) en_US
dc.description Research Areas: Dentistry, Oral Surgery & Medicine en_US
dc.description.abstract Objectives Radiological examination has an important place in dental practice, and it is frequently used in intraoral imaging. The correct numbering of teeth on radiographs is a routine practice that takes time for the dentist. This study aimed to propose an automatic detection system for the numbering of teeth in bitewing images using a faster Region-based Convolutional Neural Networks (R-CNN) method. Methods The study included 1125 bite-wing radiographs of patients who attended the Faculty of Dentistry of Eskisehir Osmangazi University from 2018 to 2019. A faster R-CNN an advanced object identification method was used to identify the teeth. The confusion matrix was used as a metric and to evaluate the success of the model. Results The deep CNN system (CranioCatch, Eskisehir, Turkey) was used to detect and number teeth in bitewing radiographs. Of 715 teeth in 109 bite-wing images, 697 were correctly numbered in the test data set. The F1 score, precision and sensitivity were 0.9515, 0.9293 and 0.9748, respectively. Conclusions A CNN approach for the analysis of bitewing images shows promise for detecting and numbering teeth. This method can save dentists time by automatically preparing dental charts. en_US
dc.language.iso eng en_US
dc.publisher TAYLOR & FRANCIS LTD-ABINGDON en_US
dc.relation.isversionof 10.1080/00016357.2020.1840624 en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Artificial intelligence, deep learning, tooth detection, bite-wing radiography en_US
dc.subject CLASSIFICATION en_US
dc.title An artificial intelligence proposal to automatic teeth detection and numbering in dental bite-wing radiographs en_US
dc.type article en_US
dc.relation.journal ACTA ODONTOLOGICA SCANDINAVICA en_US
dc.contributor.department Ordu Üniversitesi en_US
dc.contributor.authorID 0000-0002-7816-1635 en_US
dc.contributor.authorID 0000-0001-5036-9867 en_US
dc.contributor.authorID 0000-0002-4409-3101 en_US
dc.contributor.authorID 0000-0001-6768-0176 en_US
dc.contributor.authorID 0000-0002-9757-5331 en_US
dc.contributor.authorID 0000-0002-7439-1046 en_US
dc.identifier.volume 79 en_US
dc.identifier.issue 4 en_US
dc.identifier.startpage 275 en_US
dc.identifier.endpage 281 en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account