DSpace Repository

A numerical scheme for the one-dimensional neural field model

Show simple item record

dc.contributor.author Gokce, Aytul
dc.contributor.author Guerbuez, Burcu
dc.date.accessioned 2024-03-26T06:26:40Z
dc.date.available 2024-03-26T06:26:40Z
dc.date.issued 2022
dc.identifier.citation Gökce, A., Gürbüz, B. (2022). A numerical scheme for the one-dimensional neural field model. Int. J. Optim. Control-Theor. Appl.-IJOCTA, 12(2), 184-193. https://doi.org/10.11121/ijocta.2022.1219 en_US
dc.identifier.issn 2146-0957
dc.identifier.issn 2146-5703
dc.identifier.uri http://dx.doi.org/10.11121/ijocta.2022.1219
dc.identifier.uri https://www.webofscience.com/wos/woscc/full-record/WOS:000884984700010
dc.identifier.uri http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/5028
dc.description WoS Categories: Mathematics, Applied en_US
dc.description Web of Science Index: Emerging Sources Citation Index (ESCI) en_US
dc.description Research Areas: Mathematics en_US
dc.description.abstract Neural field models, typically cast as continuum integro-differential equations, are widely studied to describe the coarse-grained dynamics of real cortical tissue in mathematical neuroscience. Studying these models with a sigmoidal firing rate function allows a better insight into the stability of localised solutions through the construction of specific integrals over various synaptic connectivities. Because of the convolution structure of these integrals, it is possible to evaluate neural field model using a pseudo-spectral method, where Fourier Transform (FT) followed by an inverse Fourier Transform (IFT) is performed, leading to an identical partial differential equation. In this paper, we revisit a neural field model with a nonlinear sigmoidal firing rate and provide an efficient numerical algorithm to analyse the model regarding finite volume scheme. On the other hand, numerical results are obtained by the algorithm. en_US
dc.description.sponsorship BAP (Scientific Research Projects Coordination Unit), Ordu University [A-2007] en_US
dc.language.iso eng en_US
dc.publisher RAMAZAN YAMAN-Istanbul en_US
dc.relation.isversionof 10.11121/ijocta.2022.1219 en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Neural field, Integro-di f ferential equation, Numerical methods en_US
dc.subject MATHEMATICAL-THEORY, TRUNCATION ERROR, DYNAMICS, WAVES, EQUATIONS en_US
dc.title A numerical scheme for the one-dimensional neural field model en_US
dc.type article en_US
dc.relation.journal INTERNATIONAL JOURNAL OF OPTIMIZATION AND CONTROL-THEORIES & APPLICATIONS-IJOCTA en_US
dc.contributor.department Ordu Üniversitesi en_US
dc.contributor.authorID 0000-0002-4253-5877 en_US
dc.identifier.volume 12 en_US
dc.identifier.issue 2 en_US
dc.identifier.startpage 184 en_US
dc.identifier.endpage 193 en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account