DSpace Repository

Numbering teeth in panoramic images: A novel method based on deep learning and heuristic algorithm

Show simple item record

dc.contributor.author Karaoglu, Ahmet
dc.contributor.author Ozcan, Caner
dc.contributor.author Pekince, Adem
dc.contributor.author Yasa, Yasin
dc.date.accessioned 2024-03-20T13:46:58Z
dc.date.available 2024-03-20T13:46:58Z
dc.date.issued 2023
dc.identifier.citation Karaoglu, A., Ozcan, C., Pekince, A., Yasa, Y. (2023). Numbering teeth in panoramic images: A novel method based on deep learning and heuristic algorithm. Eng. Sci. Technol., 37. https://doi.org/10.1016/j.jestch.2022.101316 en_US
dc.identifier.issn 2215-0986
dc.identifier.uri http://dx.doi.org/10.1016/j.jestch.2022.101316
dc.identifier.uri https://www.webofscience.com/wos/woscc/full-record/WOS:000974472500001
dc.identifier.uri http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/4803
dc.description WoS Categories: Engineering, Multidisciplinary en_US
dc.description Web of Science Index: Science Citation Index Expanded (SCI-EXPANDED) en_US
dc.description Research Areas: Engineering en_US
dc.description.abstract Dental problems are one of the most common health problems for people. To detect and analyze these problems, dentists often use panoramic radiographs that show the entire mouth and have low radiation exposure and exposure time. Analyzing these radiographs is a lengthy and tedious process. Recent studies have ensured dental radiologists can perform the analyses faster with various artificial intelligence sup-ports. In this study, the numbering performance of Mask R-CNN and our heuristic algorithm-based method was verified on panoramic dental radiographs according to the Federation Dentaire Internationale (FDI) system. Ground-truth labelling of images required for training the deep learning algorithm was performed by two dental radiologists using the web-based labelling software DentiAssist created by the first author. The dataset was created from 2702 anonymized panoramic radio-graphs. The dataset is divided into 1747, 484, and 471 images, which serve as training, validation, and test sets. The dataset was validated using the k-fold cross-validation method (k = 5). A three-step heuristic algorithm was developed to improve the Mask R-CNN segmentation and numbering results. As far as we know, our study is the first in the literature to use a heuristic method in addition to traditional deep learning algorithms in detection, segmentation and numbering studies in panoramic radiography. The experimental results show that the mAp (@IOU = 0.5), precision, recall and f1 scores are 92.49%, 96.08%, 95.65% and 95.87%, respectively. The results of the learning-based algorithm were improved by more than 4%. In our research, we discovered that heuristic algorithms could improve the accuracy of deep learning-based algorithms. Our research will significantly reduce dental radiologists' workload, speed up diagnostic processes, and improve the accuracy of deep learning systems.(c) 2022 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). en_US
dc.description.sponsorship Scientific and Technological Research Council of Turkey (TUBITAK) as part of the DentiAssist project [2200272] en_US
dc.language.iso eng en_US
dc.publisher ELSEVIER - DIVISION REED ELSEVIER INDIA PVT LTD-NEW DELHI en_US
dc.relation.isversionof 10.1016/j.jestch.2022.101316 en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Deep learning, Heuristic algorithm, Mask R-CNN, Panoramic radiographs, Segmentation, Numbering en_US
dc.subject SEGMENTATION en_US
dc.title Numbering teeth in panoramic images: A novel method based on deep learning and heuristic algorithm en_US
dc.type article en_US
dc.relation.journal ENGINEERING SCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL-JESTECH en_US
dc.contributor.department Ordu Üniversitesi en_US
dc.contributor.authorID 0000-0002-9757-5331 en_US
dc.identifier.volume 37 en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account