dc.contributor.author |
Set, Erhan |
|
dc.contributor.author |
Ekinci, Alper |
|
dc.date.accessioned |
2023-01-06T11:41:07Z |
|
dc.date.available |
2023-01-06T11:41:07Z |
|
dc.date.issued |
2021 |
|
dc.identifier.citation |
Set, E., Ekinci, A. (). On some generalized integral inequalities for functions whose second derivatives in absolute values are convex. Numerical Methods For Partial Differential Equations, , -.Doi:10.1002/num.22758 |
en_US |
dc.identifier.isbn |
0749-159X |
|
dc.identifier.isbn |
1098-2426 |
|
dc.identifier.uri |
http://dx.doi.org/10.1002/num.22758 |
|
dc.identifier.uri |
https://www.webofscience.com/wos/woscc/full-record/WOS:000609906900001 |
|
dc.identifier.uri |
http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/3559 |
|
dc.description |
WoS Categories : Mathematics, Applied
Web of Science Index : Science Citation Index Expanded (SCI-EXPANDED)
Research Areas : Mathematics |
en_US |
dc.description.abstract |
In this article, general integral inequalities are obtained for functions whose absolute value of the second derivative is convex. These inequalities are more general versions of some results in the literature and we recaptured these results with the selection of special parameters. In the study, graphs are also used to compare the inequalities that occur with the change of the mu parameter. |
en_US |
dc.language.iso |
eng |
en_US |
dc.publisher |
WILEY HOBOKEN |
en_US |
dc.relation.isversionof |
10.1002/num.22758 |
en_US |
dc.rights |
info:eu-repo/semantics/openAccess |
en_US |
dc.subject |
convex function; Holder inequality; Ostrowski inequality |
en_US |
dc.title |
On some generalized integral inequalities for functions whose second derivatives in absolute values are convex |
en_US |
dc.type |
article |
en_US |
dc.relation.journal |
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS |
en_US |
dc.contributor.department |
Ordu Üniversitesi |
en_US |
dc.contributor.authorID |
0000-0003-1364-5396 |
en_US |