DSpace Repository

Exponential Independence Number of Some Graphs

Show simple item record

dc.contributor.author Aytac, Aysun
dc.contributor.author Ciftci, Canan
dc.date.accessioned 2022-08-17T05:33:51Z
dc.date.available 2022-08-17T05:33:51Z
dc.date.issued 2018
dc.identifier.uri http://doi.org/10.1142/S0129054118500260
dc.identifier.uri http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/2328
dc.description.abstract Let G be a graph and S subset of V(G). We define by < S > the subgraph of G induced by S. For each vertex u is an element of S and for each vertex v is an element of S\{u}, d((G, s\{u})())(u,v) is the length of the shortest path in < V(G) - ((S - {u}) - {v})> between u and v if such a path exists, and infinity otherwise. For a vertex u is an element of S, let omega((G, s\{u})) (u) = Sigma (v is an element of s\{u}) (1/2)(d) ((G, s\{u}) (u) (,v)-1) where (1/2)(infinity) = 0. Jager and Rautenbach [27] define a set S of vertices to be exponential independent if omega((G, s\{u})) (u) < 1 for every vertex u in S. The exponential independence number alpha(e)(G) of G is the maximum order of an exponential independent set. In this paper, we give a general theorem and we examine exponential independence number of some tree graphs and thorn graph of some graphs. en_US
dc.language.iso eng en_US
dc.publisher WORLD SCIENTIFIC PUBL CO PTE LTD, 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE en_US
dc.relation.isversionof 10.1142/S0129054118500260 en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Graph theory; vulnerability; thorn graph; independence; domination; exponential independence; complex networks en_US
dc.title Exponential Independence Number of Some Graphs en_US
dc.type article en_US
dc.relation.journal INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE en_US
dc.contributor.department Ordu Üniversitesi en_US
dc.identifier.volume 29 en_US
dc.identifier.issue 7 en_US
dc.identifier.startpage 1151 en_US
dc.identifier.endpage 1164 en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account