DSpace Repository

Porous exponential domination number of some graphs

Show simple item record

dc.contributor.author Aytac, Aysun
dc.contributor.author ciftci, Canan
dc.date.accessioned 2022-08-17T05:21:36Z
dc.date.available 2022-08-17T05:21:36Z
dc.date.issued 2020
dc.identifier.uri http://doi.org/10.1002/num.22585
dc.identifier.uri http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/2251
dc.description.abstract Let G be a graph and S subset of V(G). If n-ary sumation u is an element of S12d(u,v)-1 >= 1 for all v is an element of V(G), then S is a porous exponential dominating set for G, where d(u, v) is the distance between vertices u and v. The smallest cardinality of a porous exponential dominating set is the porous exponential domination number of G and is denoted by gamma e*(G). In this article, we examine porous exponential domination number of some shadow graphs and trees such as comet, double comet, double star, binomial tree, and generalized caterpillar graphs. en_US
dc.language.iso eng en_US
dc.publisher WILEY, 111 RIVER ST, HOBOKEN 07030-5774, NJ USA en_US
dc.relation.isversionof 10.1002/num.22585 en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject exponential domination; porous exponential domination; shadow graph; tree en_US
dc.title Porous exponential domination number of some graphs en_US
dc.type article en_US
dc.relation.journal NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS en_US
dc.contributor.department Ordu Üniversitesi en_US
dc.contributor.authorID 0000-0001-5397-0367 en_US
dc.identifier.volume 37 en_US
dc.identifier.issue 2 en_US
dc.identifier.startpage 1385 en_US
dc.identifier.endpage 1396 en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account