dc.contributor.author |
Aytac, Aysun |
|
dc.contributor.author |
ciftci, Canan |
|
dc.date.accessioned |
2022-08-17T05:21:36Z |
|
dc.date.available |
2022-08-17T05:21:36Z |
|
dc.date.issued |
2020 |
|
dc.identifier.uri |
http://doi.org/10.1002/num.22585 |
|
dc.identifier.uri |
http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/2251 |
|
dc.description.abstract |
Let G be a graph and S subset of V(G). If n-ary sumation u is an element of S12d(u,v)-1 >= 1 for all v is an element of V(G), then S is a porous exponential dominating set for G, where d(u, v) is the distance between vertices u and v. The smallest cardinality of a porous exponential dominating set is the porous exponential domination number of G and is denoted by gamma e*(G). In this article, we examine porous exponential domination number of some shadow graphs and trees such as comet, double comet, double star, binomial tree, and generalized caterpillar graphs. |
en_US |
dc.language.iso |
eng |
en_US |
dc.publisher |
WILEY, 111 RIVER ST, HOBOKEN 07030-5774, NJ USA |
en_US |
dc.relation.isversionof |
10.1002/num.22585 |
en_US |
dc.rights |
info:eu-repo/semantics/openAccess |
en_US |
dc.subject |
exponential domination; porous exponential domination; shadow graph; tree |
en_US |
dc.title |
Porous exponential domination number of some graphs |
en_US |
dc.type |
article |
en_US |
dc.relation.journal |
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS |
en_US |
dc.contributor.department |
Ordu Üniversitesi |
en_US |
dc.contributor.authorID |
0000-0001-5397-0367 |
en_US |
dc.identifier.volume |
37 |
en_US |
dc.identifier.issue |
2 |
en_US |
dc.identifier.startpage |
1385 |
en_US |
dc.identifier.endpage |
1396 |
en_US |