DSpace Repository

Disjunctive Total Domination Subdivision Number of Graphs

Show simple item record

dc.contributor.author Aytac, Vecdi
dc.contributor.author Ciftci, Canan
dc.date.accessioned 2022-08-17T05:14:41Z
dc.date.available 2022-08-17T05:14:41Z
dc.date.issued 2020
dc.identifier.uri http://doi.org/10.3233/FI-2020-1928
dc.identifier.uri http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/2209
dc.description.abstract A set S subset of V (G) is a disjunctive total dominating set of G if every vertex has a neighbor in S or has at least two vertices in S at distance 2 from it. The disjunctive total domination number is the minimum cardinality of a disjunctive total dominating set in G. We define the disjunctive total domination subdivision number of G as the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) to increase the disjunctive total domination number. In this paper, we first study the disjunctive total domination subdivision number of some special graphs. Next, we give some upper bounds on the disjunctive total domination subdivision number for any graphs in terms of vertex degree. Finally, we supply some conditions for a graph G to have a minimum disjunctive total domination subdivision number. en_US
dc.language.iso eng en_US
dc.publisher IOS PRESS, NIEUWE HEMWEG 6B, 1013 BG AMSTERDAM, NETHERLANDS en_US
dc.relation.isversionof 10.3233/FI-2020-1928 en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject domination; disjunctive total domination; subdivision en_US
dc.title Disjunctive Total Domination Subdivision Number of Graphs en_US
dc.type article en_US
dc.relation.journal FUNDAMENTA INFORMATICAE en_US
dc.contributor.department Ordu Üniversitesi en_US
dc.contributor.authorID 0000-0001-5397-0367 en_US
dc.contributor.authorID 0000-0002-0038-6180 en_US
dc.identifier.volume 174 en_US
dc.identifier.issue 1 en_US
dc.identifier.startpage 15 en_US
dc.identifier.endpage 26 en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account