Please use this identifier to cite or link to this item: http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/5224
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBayrakdar, Ibrahim Sevki-
dc.contributor.authorOrhan, Kaan-
dc.contributor.authorAkarsu, Serdar-
dc.contributor.authorCelik, Ozer-
dc.contributor.authorAtasoy, Samet-
dc.contributor.authorPekince, Adem-
dc.contributor.authorYasa, Yasin-
dc.contributor.authorBilgir, Elif-
dc.contributor.authorSaglam, Hande-
dc.contributor.authorAslan, Ahmet Faruk-
dc.contributor.authorOdabas, Alper-
dc.date.accessioned2024-03-26T06:50:52Z-
dc.date.available2024-03-26T06:50:52Z-
dc.date.issued2022-
dc.identifier.citationBayrakdar, IS., Orhan, K., Akarsu, S., Çelik, Ö., Atasoy, S., Pekince, A., Yasa, Y., Bilgir, E., Saglam, H., Aslan, AF., Odabas, A. (2022). Deep-learning approach for caries detection and segmentation on dental bitewing radiographs. Oral Radiol., 38(4), 468-479. https://doi.org/10.1007/s11282-021-00577-9en_US
dc.identifier.issn0911-6028-
dc.identifier.issn1613-9674-
dc.identifier.urihttp://dx.doi.org/10.1007/s11282-021-00577-9-
dc.identifier.urihttps://www.webofscience.com/wos/woscc/full-record/WOS:000721401600001-
dc.identifier.urihttp://earsiv.odu.edu.tr:8080/xmlui/handle/11489/5224-
dc.descriptionWoS Categories: Dentistry, Oral Surgery & Medicineen_US
dc.descriptionWeb of Science Index: Science Citation Index Expanded (SCI-EXPANDED)en_US
dc.descriptionResearch Areas: Dentistry, Oral Surgery & Medicineen_US
dc.description.abstractObjectives The aim of this study is to recommend an automatic caries detection and segmentation model based on the Convolutional Neural Network (CNN) algorithms in dental bitewing radiographs using VGG-16 and U-Net architecture and evaluate the clinical performance of the model comparing to human observer. Methods A total of 621 anonymized bitewing radiographs were used to progress the Artificial Intelligence (AI) system (CranioCatch, Eskisehir, Turkey) for the detection and segmentation of caries lesions. The radiographs were obtained from the Radiology Archive of the Department of Oral and Maxillofacial Radiology of the Faculty of Dentistry of Ordu University. VGG-16 and U-Net implemented with PyTorch models were used for the detection and segmentation of caries lesions, respectively. Results The sensitivity, precision, and F-measure rates for caries detection and caries segmentation were 0.84, 0.81; 0.84, 0.86; and 0.84, 0.84, respectively. Comparing to 5 different experienced observers and AI models on external radiographic dataset, AI models showed superiority to assistant specialists. Conclusion CNN-based AI algorithms can have the potential to detect and segmentation of dental caries accurately and effectively in bitewing radiographs. AI algorithms based on the deep-learning method have the potential to assist clinicians in routine clinical practice for quickly and reliably detecting the tooth caries. The use of these algorithms in clinical practice can provide to important benefit to physicians as a clinical decision support system in dentistry.en_US
dc.description.sponsorshipEskisehir Osmangazi University Scientific Research Projects Coordination Unit [202045E06]en_US
dc.language.isoengen_US
dc.publisherSPRINGER-NEW YORKen_US
dc.relation.isversionof10.1007/s11282-021-00577-9en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectArtificial intelligence, Deep learning, Tooth caries, Bitewing radiographs, Dentistryen_US
dc.subjectNEURAL-NETWORKen_US
dc.titleDeep-learning approach for caries detection and segmentation on dental bitewing radiographsen_US
dc.typearticleen_US
dc.relation.journalORAL RADIOLOGYen_US
dc.contributor.departmentOrdu Üniversitesien_US
dc.contributor.authorID0000-0002-7816-1635en_US
dc.contributor.authorID0000-0002-6598-8262en_US
dc.contributor.authorID0000-0002-9757-5331en_US
dc.contributor.authorID0000-0002-7439-1046en_US
dc.contributor.authorID0000-0001-5036-9867en_US
dc.contributor.authorID0000-0001-9521-4682en_US
dc.contributor.authorID0000-0002-4388-2125en_US
dc.contributor.authorID0000-0001-7792-5106en_US
dc.contributor.authorID0000-0002-4409-3101en_US
dc.contributor.authorID0000-0001-6768-0176en_US
dc.identifier.volume38en_US
dc.identifier.issue4en_US
dc.identifier.startpage468en_US
dc.identifier.endpage479en_US
Appears in Collections:Ağız, Diş ve Çene Radyolojisi

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.