Please use this identifier to cite or link to this item: http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/5028
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGokce, Aytul-
dc.contributor.authorGuerbuez, Burcu-
dc.date.accessioned2024-03-26T06:26:40Z-
dc.date.available2024-03-26T06:26:40Z-
dc.date.issued2022-
dc.identifier.citationGökce, A., Gürbüz, B. (2022). A numerical scheme for the one-dimensional neural field model. Int. J. Optim. Control-Theor. Appl.-IJOCTA, 12(2), 184-193. https://doi.org/10.11121/ijocta.2022.1219en_US
dc.identifier.issn2146-0957-
dc.identifier.issn2146-5703-
dc.identifier.urihttp://dx.doi.org/10.11121/ijocta.2022.1219-
dc.identifier.urihttps://www.webofscience.com/wos/woscc/full-record/WOS:000884984700010-
dc.identifier.urihttp://earsiv.odu.edu.tr:8080/xmlui/handle/11489/5028-
dc.descriptionWoS Categories: Mathematics, Applieden_US
dc.descriptionWeb of Science Index: Emerging Sources Citation Index (ESCI)en_US
dc.descriptionResearch Areas: Mathematicsen_US
dc.description.abstractNeural field models, typically cast as continuum integro-differential equations, are widely studied to describe the coarse-grained dynamics of real cortical tissue in mathematical neuroscience. Studying these models with a sigmoidal firing rate function allows a better insight into the stability of localised solutions through the construction of specific integrals over various synaptic connectivities. Because of the convolution structure of these integrals, it is possible to evaluate neural field model using a pseudo-spectral method, where Fourier Transform (FT) followed by an inverse Fourier Transform (IFT) is performed, leading to an identical partial differential equation. In this paper, we revisit a neural field model with a nonlinear sigmoidal firing rate and provide an efficient numerical algorithm to analyse the model regarding finite volume scheme. On the other hand, numerical results are obtained by the algorithm.en_US
dc.description.sponsorshipBAP (Scientific Research Projects Coordination Unit), Ordu University [A-2007]en_US
dc.language.isoengen_US
dc.publisherRAMAZAN YAMAN-Istanbulen_US
dc.relation.isversionof10.11121/ijocta.2022.1219en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectNeural field, Integro-di f ferential equation, Numerical methodsen_US
dc.subjectMATHEMATICAL-THEORY, TRUNCATION ERROR, DYNAMICS, WAVES, EQUATIONSen_US
dc.titleA numerical scheme for the one-dimensional neural field modelen_US
dc.typearticleen_US
dc.relation.journalINTERNATIONAL JOURNAL OF OPTIMIZATION AND CONTROL-THEORIES & APPLICATIONS-IJOCTAen_US
dc.contributor.departmentOrdu Üniversitesien_US
dc.contributor.authorID0000-0002-4253-5877en_US
dc.identifier.volume12en_US
dc.identifier.issue2en_US
dc.identifier.startpage184en_US
dc.identifier.endpage193en_US
Appears in Collections:Matematik

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.