Please use this identifier to cite or link to this item: http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/5003
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGur Mazlum, Sumeyye-
dc.contributor.authorSenyurt, Suleyman-
dc.contributor.authorGrilli, Luca-
dc.date.accessioned2024-03-26T06:23:42Z-
dc.date.available2024-03-26T06:23:42Z-
dc.date.issued2022-
dc.identifier.citationMazlum, SG., Senyurt, S., Grilli, L. (2022). The Dual Expression of Parallel Equidistant Ruled Surfaces in Euclidean 3-Space. Symmetry-Basel, 14(5). https://doi.org/10.3390/sym14051062en_US
dc.identifier.issn2073-8994-
dc.identifier.urihttp://dx.doi.org/10.3390/sym14051062-
dc.identifier.urihttps://www.webofscience.com/wos/woscc/full-record/WOS:000801415100001-
dc.identifier.urihttp://earsiv.odu.edu.tr:8080/xmlui/handle/11489/5003-
dc.descriptionWoS Categories: Multidisciplinary Sciencesen_US
dc.descriptionWeb of Science Index: Science Citation Index Expanded (SCI-EXPANDED)en_US
dc.descriptionResearch Areas: Science & Technology - Other Topicsen_US
dc.description.abstractIn this study, we examine the dual expression of Valeontis' concept of parallel p-equidistant ruled surfaces well known in Euclidean 3-space, according to the Study mapping. Furthermore, we show that the dual part of the dual angle on the unit dual sphere corresponds to the p-distance. We call these ruled surfaces we obtained dual parallel equidistant ruled surfaces and we briefly denote them with DPERS. Furthermore, we find the Blaschke vectors, the Blaschke invariants and the striction curves of these DPERS and we give the relationships between these elements. Moreover, we show the relationships between the Darboux screws, the instantaneous screw axes, the instantaneous dual Pfaff vectors and dual Steiner rotation vectors of these surfaces. Finally, we give an example, which we reinforce this article, and we explain all of these features with the figures on the example. Furthermore, we see that the corresponding dual curves on the dual unit sphere to these DPERS are such that one of them is symmetric with respect to the imaginary symmetry axis of the other.en_US
dc.language.isoengen_US
dc.publisherMDPI-BASELen_US
dc.relation.isversionof10.3390/sym14051062en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectdual parallel equidistant ruled surfaces, Study mapping, Blaschke vectors, Blaschke invariants, dual Steiner vectoren_US
dc.subjectPITCHen_US
dc.titleThe Dual Expression of Parallel Equidistant Ruled Surfaces in Euclidean 3-Spaceen_US
dc.typearticleen_US
dc.relation.journalSYMMETRY-BASELen_US
dc.contributor.departmentOrdu Üniversitesien_US
dc.contributor.authorID0000-0003-2471-1627en_US
dc.contributor.authorID0000-0003-0931-2054en_US
dc.contributor.authorID0000-0003-1097-5541en_US
dc.identifier.volume14en_US
dc.identifier.issue5en_US
Appears in Collections:Matematik

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.