Please use this identifier to cite or link to this item: http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/4646
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFiskin, Cemile Solak-
dc.contributor.authorCerit, A. Guldem-
dc.date.accessioned2024-03-15T12:10:38Z-
dc.date.available2024-03-15T12:10:38Z-
dc.date.issued2019-
dc.identifier.citationFiskin, CS., Cerit, AG. (2019). Forecasting Domestic Shipping Demand of Cement: Comparison of SARIMAX, ANN and Hybrid SARIMAX-ANN. , 68-72. https://doi.org/10.1109/ubmk.2019.8907210en_US
dc.identifier.isbn978-1-7281-3964-7-
dc.identifier.urihttp://dx.doi.org/10.1109/ubmk.2019.8907210-
dc.identifier.urihttps://www.webofscience.com/wos/woscc/full-record/WOS:000609879900014-
dc.identifier.urihttp://earsiv.odu.edu.tr:8080/xmlui/handle/11489/4646-
dc.descriptionWoS Categories: Computer Science, Theory & Methodsen_US
dc.descriptionWeb of Science Index: Conference Proceedings Citation Index - Science (CPCI-S)en_US
dc.descriptionResearch Areas: Computer Scienceen_US
dc.descriptionConference Title: 4th International Conference on Computer Science and Engineering (UBMK)en_US
dc.description.abstractAccurate forecasting of shipping demand for cement is valuable for the ensure of proper supply and demand match. Due to the perishability nature of the shipping industry, accuracy performances of the models in the industry is particularly important. Therefore, supply and demand in the industry should match. This paper compares three methods, Seasonal Autoregressise Integrated Moving Average with Exogenous Variable (SARIMAX), Artificial Neural Network-Multilayer Perceptron (MLP), and SARIMAX-MLP hybrid model for domestic shipping demand of cement loaded at ports of Turkey. The hybrid model forecasting of the shipping demand of cement appears to be more applicable than that of the single SARIMAX. The results indicate that the prediction accuracy of SARIMAX model is higher than the MLP model and that the hybrid model is the most satisfactory of the three models.en_US
dc.language.isoengen_US
dc.publisherIEEE-NEW YORKen_US
dc.relation.isversionof10.1109/ubmk.2019.8907210en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectSeasonal autoregressive integrated moving average with erogenous variable (SARINMX), hybrid model, artificial neural network, domestic shippingen_US
dc.titleForecasting Domestic Shipping Demand of Cement: Comparison of SARIMAX, ANN and Hybrid SARIMAX-ANNen_US
dc.typearticleen_US
dc.relation.journal2019 4TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK)en_US
dc.contributor.departmentOrdu Üniversitesien_US
dc.contributor.authorID0000-0003-3358-0673en_US
dc.identifier.startpage68en_US
dc.identifier.endpage72en_US
Appears in Collections:Denizcilik İşletmeleri Yönetimi

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.