Please use this identifier to cite or link to this item: http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/4483
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSenyurt, Suleyman-
dc.contributor.authorCaliskan, Abdussamet-
dc.date.accessioned2024-03-15T11:18:25Z-
dc.date.available2024-03-15T11:18:25Z-
dc.date.issued2020-
dc.identifier.citationSenyurt, S., Çaliskan, A. (2020). Dual Pole Indicatrix Curve and Surface. Appl. Appl. Math., 15(2)en_US
dc.identifier.issn1932-9466-
dc.identifier.urihttps://www.webofscience.com/wos/woscc/full-record/WOS:000740355600001-
dc.identifier.urihttp://earsiv.odu.edu.tr:8080/xmlui/handle/11489/4483-
dc.descriptionWoS Categories: Mathematics, Applieden_US
dc.descriptionWeb of Science Index: Emerging Sources Citation Index (ESCI)en_US
dc.descriptionResearch Areas: Mathematicsen_US
dc.description.abstractIn this paper, the vectorial moment vector of the unit Darboux vector, which consists of the motion of the Frenet vectors on any curve, is reexpressed in the form of Frenet vectors. According to the new version of this vector, the parametric equation of the ruled surface corresponding to the unit dual pole indicatrix curve is given. The integral invariants of this surface are rederived and illustrated by presenting with examples.en_US
dc.description.sponsorshipOrdu University Institute of Scienceen_US
dc.language.isoengen_US
dc.publisherPRAIRIE VIEW A & M UNIV, DEPT MATHEMATICS-PRAIRIE VIEWen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectDual space, Dual angle of pitch, Darboux vector, Ruled surface, Dual pole indicatrix curve, Vectorial moment, The pitch, The angle of pitchen_US
dc.subjectPITCHen_US
dc.titleDual Pole Indicatrix Curve and Surfaceen_US
dc.typearticleen_US
dc.relation.journalAPPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNALen_US
dc.contributor.departmentOrdu Üniversitesien_US
dc.identifier.volume15en_US
dc.identifier.issue2en_US
Appears in Collections:Matematik

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.