Please use this identifier to cite or link to this item: http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/4459
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMunim, Ziaul Haque-
dc.contributor.authorFiskin, Cemile Solak-
dc.contributor.authorNepal, Bikram-
dc.contributor.authorChowdhury, Mohammed Mojahid Hossain-
dc.date.accessioned2024-03-15T11:15:53Z-
dc.date.available2024-03-15T11:15:53Z-
dc.date.issued2023-
dc.identifier.citationMunim, ZH., Fiskin, CS., Nepal, B., Chowdhury, MMH. (2023). Forecasting container throughput of major Asian ports using the Prophet and hybrid time series models. Asian J. Shipping Logist., 39(2), 67-77. https://doi.org/10.1016/j.ajsl.2023.02.004en_US
dc.identifier.issn2092-5212-
dc.identifier.issn2352-4871-
dc.identifier.urihttp://dx.doi.org/10.1016/j.ajsl.2023.02.004-
dc.identifier.urihttps://www.webofscience.com/wos/woscc/full-record/WOS:001060892600001-
dc.identifier.urihttp://earsiv.odu.edu.tr:8080/xmlui/handle/11489/4459-
dc.descriptionWoS Categories: Transportationen_US
dc.descriptionWeb of Science Index: Emerging Sources Citation Index (ESCI)en_US
dc.descriptionResearch Areas: Transportationen_US
dc.description.abstractForecasting container throughput is critical for improved port planning, operations, and investment strategies. Reliability of forecasting methods need to be ensured before utilizing their outcomes in decision making. This study compares forecasting performances of various time series methods, namely auto regressive integrated moving average (ARIMA), seasonal ARIMA (SARIMA), Holt-Winter's Exponential Smoothing (HWES), and the Prophet model. Since forecast combinations can improve performance, simple and weighted combinations of ARIMA, SARIMA and HWES have been explored, too. Monthly container throughput data of port of Shanghai, Busan, and Nagoya are used. The Prophet model outperforms others in the in-sample forecasting, while combined models outperform others in the out-sample forecasting. Due to the observed differences between the in-sample and out-sample forecast accuracy measures, this study proposes a forecast performance metric consistency check approach for informed real-world applications of forecasting models in port management decision-making.& COPY; 2023 The Authors. Production and hosting by Elsevier B.V. on behalf of The Korean Association of Shipping and Logistics, Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).en_US
dc.language.isoengen_US
dc.publisherELSEVIER-AMSTERDAMen_US
dc.relation.isversionof10.1016/j.ajsl.2023.02.004en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectTime series prediction, Exponential smoothing, Port throughput, Forecast combinationen_US
dc.subjectCOMBINATION, SELECTIONen_US
dc.titleForecasting container throughput of major Asian ports using the Prophet and hybrid time series modelsen_US
dc.typearticleen_US
dc.relation.journalASIAN JOURNAL OF SHIPPING AND LOGISTICSen_US
dc.contributor.departmentOrdu Üniversitesien_US
dc.contributor.authorID0000-0003-4690-7858en_US
dc.contributor.authorID0000-0002-5942-708Xen_US
dc.identifier.volume39en_US
dc.identifier.issue2en_US
dc.identifier.startpage67en_US
dc.identifier.endpage77en_US
Appears in Collections:Denizcilik İşletmeleri Yönetimi

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.