Please use this identifier to cite or link to this item: http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/4393
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSet, Erhan-
dc.contributor.authorKorkut, Necla-
dc.date.accessioned2024-03-15T11:07:55Z-
dc.date.available2024-03-15T11:07:55Z-
dc.date.issued2016-
dc.identifier.citationSet, E., Korkut, N. (2016). On New Inequalities of Hermite Hadamard Type for Functions Whose Second Derivatives in Absolute Value Are s-Convex. , 1726. https://doi.org/10.1063/1.4945866en_US
dc.identifier.isbn978-0-7354-1373-3-
dc.identifier.issn0094-243X-
dc.identifier.urihttp://dx.doi.org/10.1063/1.4945866-
dc.identifier.urihttps://www.webofscience.com/wos/woscc/full-record/WOS:000376001000040-
dc.identifier.urihttp://earsiv.odu.edu.tr:8080/xmlui/handle/11489/4393-
dc.descriptionWoS Categories: Physics, Applieden_US
dc.descriptionWeb of Science Index: Conference Proceedings Citation Index - Science (CPCI-S)en_US
dc.descriptionResearch Areas: Physicsen_US
dc.descriptionConference Title: International Conference on Advances in Natural and Applied Sciences (ICANAS)en_US
dc.description.abstractIn this paper, we establish several inequalities of the right hand side of Hermite-Hadamard inequalities for functions whose second derivatives are s-convex in the second sense by using Holder and generalied Holder inequalitiesen_US
dc.language.isoengen_US
dc.publisherAMER INST PHYSICS-MELVILLEen_US
dc.relation.isversionof10.1063/1.4945866en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.titleOn New Inequalities of Hermite Hadamard Type for Functions Whose Second Derivatives in Absolute Value Are s-Convexen_US
dc.typearticleen_US
dc.relation.journalINTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES: ICANAS 2016en_US
dc.contributor.departmentOrdu Üniversitesien_US
dc.contributor.authorID0000-0003-1364-5396en_US
dc.identifier.volume1726en_US
Appears in Collections:Matematik

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.