Please use this identifier to cite or link to this item: http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/3586
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFiskin, Remzi-
dc.contributor.authorCakir, Erkan-
dc.contributor.authorSevgili, Coskan-
dc.date.accessioned2023-01-06T11:59:15Z-
dc.date.available2023-01-06T11:59:15Z-
dc.date.issued2021-
dc.identifier.citationFiskin, R., Cakir, E., Sevgili, C. (2021). Decision Tree and Logistic Regression Analysis to Explore Factors Contributing to Harbour Tugboat Accidents. Journal of Navigation, 74(1), 79-104.Doi:10.1017/S0373463320000363en_US
dc.identifier.isbn0373-4633-
dc.identifier.isbn1469-7785-
dc.identifier.urihttp://dx.doi.org/10.1017/S0373463320000363-
dc.identifier.urihttps://www.webofscience.com/wos/woscc/full-record/WOS:000607832100006-
dc.identifier.urihttp://earsiv.odu.edu.tr:8080/xmlui/handle/11489/3586-
dc.descriptionWoS Categories : Engineering, Marine; Oceanography Web of Science Index : Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) Research Areas : Engineering; Oceanographyen_US
dc.description.abstractAs tugboats interact very closely with ships in restricted waters, the possibility of accidents increases in these operations. Despite the high accident possibility, there is a gap in studies on tugboat accidents. This study aims to analyse accidents involving tugboats using data mining. For this purpose, a tugboat accidents dataset consisting of a total of 496 accident records for the period from 2008 to 2019 was collected. Logistic regression and decision tree algorithms were implemented to the dataset. The results revealed that tugboat propulsion type is the most important and influential factor in the severity of tugboat accidents. The inferences drawn from these results could be beneficial for tugboat operators and port authorities in enhancing their awareness of the factors affecting tugboat accidents. In addition, the outputs of this study can be a reference for management units in developing strategies for preventing tugboat accidents and can also be used in effective planning for practicable prevention programmes and practices.en_US
dc.language.isoengen_US
dc.publisherCAMBRIDGE UNIV PRESS NEW YORKen_US
dc.relation.isversionof10.1017/S0373463320000363en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectSTATISTICAL-ANALYSIS; BAYESIAN NETWORK; SHIP ACCIDENTS; SAFETY CLIMATE; HUMAN ELEMENT; COST-BENEFIT; SEVERITY; DETERMINANTS; RISK; WORKen_US
dc.subjectTugboats; Decision Tree; Data Mining; Accident Severityen_US
dc.titleDecision Tree and Logistic Regression Analysis to Explore Factors Contributing to Harbour Tugboat Accidentsen_US
dc.typearticleen_US
dc.relation.journalJOURNAL OF NAVIGATIONen_US
dc.contributor.departmentOrdu Üniversitesien_US
dc.contributor.authorID0000-0002-5949-0193en_US
dc.contributor.authorID0000-0001-8486-3310en_US
dc.contributor.authorID0000-0003-3929-079Xen_US
dc.identifier.volume74en_US
dc.identifier.issue1en_US
dc.identifier.startpage79en_US
dc.identifier.endpage104en_US
Appears in Collections:Deniz Ulaştırma İşletme Mühendisliği

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.