Please use this identifier to cite or link to this item: http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/2711
Title: Application of an Efficient Amperometric Glucose Sensing Electrode Based on a Bilayer Polymer Film Platform
Authors: Kaya, Hava Zekiye
Soylemez, Saniye
Toppare, Levent
Udum, Yasemin Arslan
Ordu Üniversitesi
0000-0002-5844-3459
0000-0002-8955-133X
Keywords: CONDUCTING POLYMER; BIOSENSOR; FERROCENE; REDOX; OXIDASE; NANOTUBES; COMPOSITE; COPOLYMER
Issue Date: 2018
Publisher: ELECTROCHEMICAL SOC INC, 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA
Abstract: A new approach was developed using a combination of a conducting polymer; poly(3,4-ethylenedioxythiophene) (PEDOT) with the electrochemically produced polymer of N-ferrocenyl-3-(1H-pyrrol-1-yl) aniline, (PFcPyBz) layer for the enzyme scaffolding resulting in excellent analytical parameters. To organize such a surface, graphite electrode was coated with a PEDOT layer and it was used as a transducer for electrochemical deposition of the polymer of a newly synthesized FcPyBz monomer. Using a PEDOT layer as the working electrode improved localization of the PFcPyBz on the transducer surface while enhancing the biosensor performance. A simple binding of glucose oxidase (GOx) as a test enzyme on this new polymeric platform was achieved using glutaraldehyde (GA) as the cross linker. The low limit of detection and high sensing sensitivity on glucose for the biosensor are estimated as 54 mu M and 112.2 mu A/mMcm(2), respectively. The surface characterizations of the modified electrodes were investigated by cyclic voltammetry (CV), attenuated total reflectance-fourier transform infrared (ATR-FTIR) spectroscopy and scanning electron microscopy (SEM) techniques. Finally, different kinds of beverages were tested for sensor reliability with high accuracy. (c) 2018 The Electrochemical Society.
URI: http://doi.org/10.1149/2.1121816jes
http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/2711
Appears in Collections:Kimya

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.