Please use this identifier to cite or link to this item: http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/2364
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAkdemir, Ahmet Ocak-
dc.contributor.authorGozpinar, Abdurrahman-
dc.contributor.authorJarad, Fahd-
dc.contributor.authorSet, Erhan-
dc.date.accessioned2022-08-17T05:41:29Z-
dc.date.available2022-08-17T05:41:29Z-
dc.date.issued2019-
dc.identifier.urihttp://doi.org/10.3934/math.2019.6.1684-
dc.identifier.urihttp://earsiv.odu.edu.tr:8080/xmlui/handle/11489/2364-
dc.description.abstractIn this present study, firstly, some necessary definitions and some results related to Riemann-Liouville fractional and new fractional conformable integral operators defined by Jarad et al. [13] are given. As a second, a new identity has been proved. By using this identity, new Ostrowski type inequalities has obtained involving fractional conformable integral operators. Also, some new inequalities has established for AG-convex functions via fractional conformable integrals in this study. Relevant connections of the results presented here with those earlier ones are also pointed out.en_US
dc.language.isoengen_US
dc.publisherAMER INST MATHEMATICAL SCIENCES-AIMS, PO BOX 2604, SPRINGFIELD, MO 65801-2604 USAen_US
dc.relation.isversionof10.3934/math.2019.6.1684en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjects-convex function; Hermite-Hadamard inequality; fractional conformable integralen_US
dc.titleOstrowski type inequalities via new fractional conformable integralsen_US
dc.typearticleen_US
dc.relation.journalAIMS MATHEMATICSen_US
dc.contributor.departmentOrdu Üniversitesien_US
dc.contributor.authorID0000-0003-1364-5396en_US
dc.contributor.authorID0000-0003-2466-0508en_US
dc.identifier.volume4en_US
dc.identifier.issue6en_US
dc.identifier.startpage1684en_US
dc.identifier.endpage1697en_US
Appears in Collections:Matematik

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.