Please use this identifier to cite or link to this item: http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/2358
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCakir, Osman-
dc.contributor.authorSenyurt, Suleyman-
dc.date.accessioned2022-08-17T05:40:33Z-
dc.date.available2022-08-17T05:40:33Z-
dc.date.issued2019-
dc.identifier.urihttp://doi.org/10.2298/TSCI190730401C-
dc.identifier.urihttp://earsiv.odu.edu.tr:8080/xmlui/handle/11489/2358-
dc.description.abstractIn this paper, we first give necessary conditions in which we can decide whether a given curve is biharmonic or 1-type harmonic and differential equations characterizing the regular curves. Then we research the Frenet formulas of involute of a unit speed curve by making use of the relations between the involute of a curve and the curve itself. In addition we apply these formulas to define the essential conditions by which one can determine whether the involute of a unit speed curve is biharmonic or 1-type harmonic and then we write differential equations characterizing the involute curve by means of Frenet apparatus of the unit speed curve. Finally we examined the helix as an example to illustrate how the given theorems work.en_US
dc.language.isoengen_US
dc.publisherVINCA INST NUCLEAR SCI, MIHAJLA PETROVICA-ALASA 12-14 VINCA, 11037 BELGRADE. POB 522, BELGRADE, 11001, SERBIAen_US
dc.relation.isversionof10.2298/TSCI190730401Cen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectLaplace operator; connection; differential equation; bihar-monic; involute curve; mean curvatureen_US
dc.titleHARMONICITY AND DIFFERENTIAL EQUATION OF INVOLUTE OF A CURVE IN E-3en_US
dc.typearticleen_US
dc.relation.journalTHERMAL SCIENCEen_US
dc.contributor.departmentOrdu Üniversitesien_US
dc.contributor.authorID0000-0003-1097-5541en_US
dc.identifier.volume23en_US
dc.identifier.issue6en_US
dc.identifier.startpageS2119en_US
dc.identifier.endpageS2125en_US
Appears in Collections:Matematik

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.