Please use this identifier to cite or link to this item:
http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/2328
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Aytac, Aysun | - |
dc.contributor.author | Ciftci, Canan | - |
dc.date.accessioned | 2022-08-17T05:33:51Z | - |
dc.date.available | 2022-08-17T05:33:51Z | - |
dc.date.issued | 2018 | - |
dc.identifier.uri | http://doi.org/10.1142/S0129054118500260 | - |
dc.identifier.uri | http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/2328 | - |
dc.description.abstract | Let G be a graph and S subset of V(G). We define by < S > the subgraph of G induced by S. For each vertex u is an element of S and for each vertex v is an element of S\{u}, d((G, s\{u})())(u,v) is the length of the shortest path in < V(G) - ((S - {u}) - {v})> between u and v if such a path exists, and infinity otherwise. For a vertex u is an element of S, let omega((G, s\{u})) (u) = Sigma (v is an element of s\{u}) (1/2)(d) ((G, s\{u}) (u) (,v)-1) where (1/2)(infinity) = 0. Jager and Rautenbach [27] define a set S of vertices to be exponential independent if omega((G, s\{u})) (u) < 1 for every vertex u in S. The exponential independence number alpha(e)(G) of G is the maximum order of an exponential independent set. In this paper, we give a general theorem and we examine exponential independence number of some tree graphs and thorn graph of some graphs. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | WORLD SCIENTIFIC PUBL CO PTE LTD, 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE | en_US |
dc.relation.isversionof | 10.1142/S0129054118500260 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Graph theory; vulnerability; thorn graph; independence; domination; exponential independence; complex networks | en_US |
dc.title | Exponential Independence Number of Some Graphs | en_US |
dc.type | article | en_US |
dc.relation.journal | INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE | en_US |
dc.contributor.department | Ordu Üniversitesi | en_US |
dc.identifier.volume | 29 | en_US |
dc.identifier.issue | 7 | en_US |
dc.identifier.startpage | 1151 | en_US |
dc.identifier.endpage | 1164 | en_US |
Appears in Collections: | Matematik |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.