Please use this identifier to cite or link to this item: http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/2328
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAytac, Aysun-
dc.contributor.authorCiftci, Canan-
dc.date.accessioned2022-08-17T05:33:51Z-
dc.date.available2022-08-17T05:33:51Z-
dc.date.issued2018-
dc.identifier.urihttp://doi.org/10.1142/S0129054118500260-
dc.identifier.urihttp://earsiv.odu.edu.tr:8080/xmlui/handle/11489/2328-
dc.description.abstractLet G be a graph and S subset of V(G). We define by < S > the subgraph of G induced by S. For each vertex u is an element of S and for each vertex v is an element of S\{u}, d((G, s\{u})())(u,v) is the length of the shortest path in < V(G) - ((S - {u}) - {v})> between u and v if such a path exists, and infinity otherwise. For a vertex u is an element of S, let omega((G, s\{u})) (u) = Sigma (v is an element of s\{u}) (1/2)(d) ((G, s\{u}) (u) (,v)-1) where (1/2)(infinity) = 0. Jager and Rautenbach [27] define a set S of vertices to be exponential independent if omega((G, s\{u})) (u) < 1 for every vertex u in S. The exponential independence number alpha(e)(G) of G is the maximum order of an exponential independent set. In this paper, we give a general theorem and we examine exponential independence number of some tree graphs and thorn graph of some graphs.en_US
dc.language.isoengen_US
dc.publisherWORLD SCIENTIFIC PUBL CO PTE LTD, 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPOREen_US
dc.relation.isversionof10.1142/S0129054118500260en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectGraph theory; vulnerability; thorn graph; independence; domination; exponential independence; complex networksen_US
dc.titleExponential Independence Number of Some Graphsen_US
dc.typearticleen_US
dc.relation.journalINTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCEen_US
dc.contributor.departmentOrdu Üniversitesien_US
dc.identifier.volume29en_US
dc.identifier.issue7en_US
dc.identifier.startpage1151en_US
dc.identifier.endpage1164en_US
Appears in Collections:Matematik

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.