Please use this identifier to cite or link to this item: http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/2251
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAytac, Aysun-
dc.contributor.authorciftci, Canan-
dc.date.accessioned2022-08-17T05:21:36Z-
dc.date.available2022-08-17T05:21:36Z-
dc.date.issued2020-
dc.identifier.urihttp://doi.org/10.1002/num.22585-
dc.identifier.urihttp://earsiv.odu.edu.tr:8080/xmlui/handle/11489/2251-
dc.description.abstractLet G be a graph and S subset of V(G). If n-ary sumation u is an element of S12d(u,v)-1 >= 1 for all v is an element of V(G), then S is a porous exponential dominating set for G, where d(u, v) is the distance between vertices u and v. The smallest cardinality of a porous exponential dominating set is the porous exponential domination number of G and is denoted by gamma e*(G). In this article, we examine porous exponential domination number of some shadow graphs and trees such as comet, double comet, double star, binomial tree, and generalized caterpillar graphs.en_US
dc.language.isoengen_US
dc.publisherWILEY, 111 RIVER ST, HOBOKEN 07030-5774, NJ USAen_US
dc.relation.isversionof10.1002/num.22585en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectexponential domination; porous exponential domination; shadow graph; treeen_US
dc.titlePorous exponential domination number of some graphsen_US
dc.typearticleen_US
dc.relation.journalNUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONSen_US
dc.contributor.departmentOrdu Üniversitesien_US
dc.contributor.authorID0000-0001-5397-0367en_US
dc.identifier.volume37en_US
dc.identifier.issue2en_US
dc.identifier.startpage1385en_US
dc.identifier.endpage1396en_US
Appears in Collections:Matematik

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.