Please use this identifier to cite or link to this item: http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/2209
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAytac, Vecdi-
dc.contributor.authorCiftci, Canan-
dc.date.accessioned2022-08-17T05:14:41Z-
dc.date.available2022-08-17T05:14:41Z-
dc.date.issued2020-
dc.identifier.urihttp://doi.org/10.3233/FI-2020-1928-
dc.identifier.urihttp://earsiv.odu.edu.tr:8080/xmlui/handle/11489/2209-
dc.description.abstractA set S subset of V (G) is a disjunctive total dominating set of G if every vertex has a neighbor in S or has at least two vertices in S at distance 2 from it. The disjunctive total domination number is the minimum cardinality of a disjunctive total dominating set in G. We define the disjunctive total domination subdivision number of G as the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) to increase the disjunctive total domination number. In this paper, we first study the disjunctive total domination subdivision number of some special graphs. Next, we give some upper bounds on the disjunctive total domination subdivision number for any graphs in terms of vertex degree. Finally, we supply some conditions for a graph G to have a minimum disjunctive total domination subdivision number.en_US
dc.language.isoengen_US
dc.publisherIOS PRESS, NIEUWE HEMWEG 6B, 1013 BG AMSTERDAM, NETHERLANDSen_US
dc.relation.isversionof10.3233/FI-2020-1928en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectdomination; disjunctive total domination; subdivisionen_US
dc.titleDisjunctive Total Domination Subdivision Number of Graphsen_US
dc.typearticleen_US
dc.relation.journalFUNDAMENTA INFORMATICAEen_US
dc.contributor.departmentOrdu Üniversitesien_US
dc.contributor.authorID0000-0001-5397-0367en_US
dc.contributor.authorID0000-0002-0038-6180en_US
dc.identifier.volume174en_US
dc.identifier.issue1en_US
dc.identifier.startpage15en_US
dc.identifier.endpage26en_US
Appears in Collections:Matematik

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.