Please use this identifier to cite or link to this item: http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/2209
Title: Disjunctive Total Domination Subdivision Number of Graphs
Authors: Aytac, Vecdi
Ciftci, Canan
Ordu Üniversitesi
0000-0001-5397-0367
0000-0002-0038-6180
Keywords: domination; disjunctive total domination; subdivision
Issue Date: 2020
Publisher: IOS PRESS, NIEUWE HEMWEG 6B, 1013 BG AMSTERDAM, NETHERLANDS
Abstract: A set S subset of V (G) is a disjunctive total dominating set of G if every vertex has a neighbor in S or has at least two vertices in S at distance 2 from it. The disjunctive total domination number is the minimum cardinality of a disjunctive total dominating set in G. We define the disjunctive total domination subdivision number of G as the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) to increase the disjunctive total domination number. In this paper, we first study the disjunctive total domination subdivision number of some special graphs. Next, we give some upper bounds on the disjunctive total domination subdivision number for any graphs in terms of vertex degree. Finally, we supply some conditions for a graph G to have a minimum disjunctive total domination subdivision number.
URI: http://doi.org/10.3233/FI-2020-1928
http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/2209
Appears in Collections:Matematik

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.