Please use this identifier to cite or link to this item: http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/1068
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorDr. Öğr. Üyesi Korkmaz, Mehmet-
dc.contributor.authorÖzkurt Başustaoğlu, Elif-
dc.date.accessioned2022-08-12T07:14:27Z-
dc.date.available2022-08-12T07:14:27Z-
dc.date.issued2019-
dc.date.submitted2019-
dc.identifier.urihttp://earsiv.odu.edu.tr:8080/xmlui/handle/11489/1068-
dc.description.abstractBu tezde yaygın olarak kullanılan büyüme modellerinin genelleştirilmesi sunulmuştur. () () t f t rf t ′ = hız-durum adi diferansiyel denkleminin daha genel bir çözümü olarak Koya-Goshu biyolojik büyüme modeli tanıtılmaktadır. Koya-Goshu modeli, biri büyüme durumunu ve diğeri asimptotik davranışları etkileyen iki parametreden oluşur. Burada, Koya-Goshu modeli ile Brody, Von Bertalanffy, Richards, Weibull, Monomoleküler, Mitscherlich, Gompertz, Klasik Lojistik, Genelleştirilmiş Lojistik ve Genelleştirilmiş Lojistik Fonksiyonunun Özel Durumu gibi yaygın olarak kullanılan büyüme modellerinin arasındaki matematiksel ilişkiler ayrıntılı olarak incelenerek, bir akış şemasında gösterilmiştir. Bu büyüme modeli öyle esnektir ki, şimdiye kadar hiç kullanılmamış yeni yararlı modeller üretme kapasitesine de sahiptir. Bunun yanında yukarıda adı geçen büyüme modelleri ele alınarak her birinin biyolojik büyümeleri tanımlayan hız-durum diferansiyel denkleminin bir çözümünün olduğu açıkça belirtilmektedir. Hız-durum denkleminin çözümleri olarak nispi büyüme oran fonksiyonları ve büyümeleri incelenmiştir. Yukarıda belirtilen fonksiyonlar için nispi büyüme fonksiyonu tr , İntegral Sabiti logC ve B parametresi oluşturuldu. Modellerin türevleri, bu türevlerin literatürde bulunamaması ve biyoloji bilimleri alanlarında çalışan matematik dışı çalışmacılar da düşünülerek ayrıntılı olarak sunulmaktadır.,In this thesis, generalization of widely used growth models is presented. The KoyaGoshu biological growth models is introduced as a more general solution of the speed-state ordinary differential equation () () t f t rf t ′ = . The Koya-Goshu model consists of two parameters, one affecting the growth state and the other asymptotic behavior. Here, the mathematical relationships between the Koya-Goshu model and the widely used growth models such as Brody, Von Bertalanffy, Richards, Weibull, Monomolecular, Mitscherlich, Gompertz, Classical Logistic, Generalized Logistic Function and the special situation of the Logistic Function are examined in detail and shown in a flowchart. This growth model is so flexible that it has the capacity to produce new useful models that have never been used. In addition, the mentioned growth models above are considered and it is clearly stated that each one has a solution of the speed-state differential equation describing the biological growth. Relative growth rate functions and their growth are examined as solutions of the velocity-state equation. The relative growth function tr , the Integral Constant logC and the parameter B were created for the functions described above. Derivatives of the models are presented in detail considering non-mathematics researchers working in the fields of biology and unavailability of these derivatives in literature.en_US
dc.description.abstractIn this thesis, generalization of widely used growth models is presented. The KoyaGoshu biological growth models is introduced as a more general solution of the speed-state ordinary differential equation () () t f t rf t ′ = . The Koya-Goshu model consists of two parameters, one affecting the growth state and the other asymptotic behavior. Here, the mathematical relationships between the Koya-Goshu model and the widely used growth models such as Brody, Von Bertalanffy, Richards, Weibull, Monomolecular, Mitscherlich, Gompertz, Classical Logistic, Generalized Logistic Function and the special situation of the Logistic Function are examined in detail and shown in a flowchart. This growth model is so flexible that it has the capacity to produce new useful models that have never been used. In addition, the mentioned growth models above are considered and it is clearly stated that each one has a solution of the speed-state differential equation describing the biological growth. Relative growth rate functions and their growth are examined as solutions of the velocity-state equation. The relative growth function tr , the Integral Constant logC and the parameter B were created for the functions described above. Derivatives of the models are presented in detail considering non-mathematics researchers working in the fields of biology and unavailability of these derivatives in literature.en_US
dc.language.isoturen_US
dc.publisherFen Bilimleri Enstitüsüen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBüyüme modelleri, Koya–Goshu fonksiyonu, Hız-durum adi diferansiyel denklemi,Growth models, Koya–Goshu function, Speed-state ordinary differential equationen_US
dc.titleYaygın Olarak Kullanılan Büyüme Modellerinin Genelleştirilmesi Üzerine Bir Çalışmaen_US
dc.title.alternativeA STUDY ON THE GENERALIZATION OF THE COMMONLY USED GROWTH MODELSen_US
dc.typemasterThesisen_US
dc.contributor.departmentOrdu Üniversitesien_US
dc.contributor.departmentFen Bilimleri Enstitüsüen_US
Appears in Collections:Fen Bilimleri Enstitüsü

Files in This Item:
File Description SizeFormat 
10181433.pdf101814332.22 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.