dc.contributor.advisor |
Dr. Öğr. Üyesi Akkaya Oy, Sibel |
|
dc.contributor.author |
Akkaya, Sezai |
|
dc.date.accessioned |
2022-08-11T08:24:57Z |
|
dc.date.available |
2022-08-11T08:24:57Z |
|
dc.date.issued |
2019 |
|
dc.date.submitted |
2019 |
|
dc.identifier.uri |
http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/498 |
|
dc.description.abstract |
İnsanlık tarihi boyunca birçok dönüm noktası olmuştur. Bunlara örnek tekerin icadı,
ateşin bulunması, yazının icadı, barutun bulunması ve sanayi devrimi verilebilir. Her
bir dönüm noktası ile insanoğlunun enerjiye ihtiyacı artmıştır. Enerjinin temel
kaynağı olan güneşi insanoğlu geçmişten günümüze doğrudan veya dolaylı olarak
kullanmıştır. Sanayi devrimi ile birlikte insanoğlu bu enerji ihtiyacını yüzyıllar
boyunca fosil kaynaklar ile gidermiştir. Ancak bu fosil kaynaklar çok büyük çevre
problemlerine (küresel ısınma, buzulların erimesi, canlı türlerinin yok olması vs.) yol
açmaktadır. Ayrıca fosil yakıtların kullanılması ile enerji yönünden devamlılığın
sağlanması imkansızdır. Bütün bu sebepler yenilenebilir enerji kaynaklarından enerji
elde etmeyi zorunlu kılmıştır.
Yenilenebilir enerji kaynakları arasında rüzgar ve güneş ön plana çıkmaktadır. Bu
çalışmada Dünya’da ve Türkiye’de güneş enerjisinin durumu incelenmiştir.
Dünya’da güneş enerjisi potansiyeli bakımından iyi bir konuma sahip olan
Türkiye’nin bu potansiyelini tam olarak kullanamadığı görülmektedir.
Bu çalışmada; Farklı güneş radyasyon verilerine sahip olan Türkiye’nin İki farklı
bölgesinde bulunan Samsun, Bayburt (Karadeniz Bölgesi) ve Mersin (Akdeniz
Bölgesi) şehirlerine şebekeye bağlı 1 kW, 5 kW ve 10 kW kurulu güce sahip çatı tipi
güneş enerji santrali modellemesi yapılmıştır. Ayrıca 7,224 kWh günlük enerji
talebini karşılayacak şebekeden ayrık çatı tipi GES modellemesi de yapılmıştır. Bu
modellemeler, PVGIS, PVsyst ve HOMER simülasyon programları ile yapılmıştır.
Şebekeden ayrık çatı tipi GES için matematiksel hesaplamalar da yapılmıştır.
III
Bu çalışmada çatı tipi GES modellemelerinin üretim ve maliyet analizleri yapılarak
yatırım yapılabilirlik seviyeleri incelenmiştir. Bu modelleme verileri ile güneş
radyasyon verileri Türkiye ortalamasının altında olan Samsun şehri, güneş radyasyon
verileri Türkiye ortalamasına yakın olan fakat güneş enerji potansiyelini yeterince
kullanamayan Bayburt ve güneş radyasyon verileri Türkiye ortalamasının üzerinde
olan Mersin gibi şehirlerdeki yatırım yapılabilirlik seviyeleri ortaya çıkarılmıştır.
Simülasyon sonuçlarına göre; GES’den yıllık en fazla enerji üretimi elde edilen
Mersin ile en az enerji elde edilen Samsun arasında yaklaşık 2,7 yıl geri ödeme süresi
tespit edilmiştir. Ancak geri ödeme süreleri hem simülasyon programlarında hem de
yapılan piyasa araştırmalarına göre yatırım yapılabilir seviye olarak kabul edilen 7-8
yılın üzerinde çıkmıştır. Bu sebeple 3 il için de çatı tipi GES yatırım yapılabilir
olarak görülmemiştir. Bu çalışmada çatı tipi GES yatırımlarının artmasına katkıda
bulunacağı düşünülen çeşitli öneriler sunulmuştur.
Çatı tipi GES ilk yatırım maliyetlerinin yüksek olması sebebiyle yatırım yapılabilir
seviye olarak kabul edilen 7-8 yıllık geri dönüşüm sürelerine geri dönülebilmesi
durumunda bu alanda yatırımların artacağı düşünülmektedir. Aksi takdirde çatı ve
cephe tipi GES’ler kamu yatırımları dışında özel sektör ve meskenlerde bu alana
yönelimde istenen seviyeler gerçekleşmeyeceği düşünülmektedir.
Yatırım yapılabilir seviye olarak kabul edilen 7-8 yıllık geri dönüşüm sürelerine geri
dönülebilmesi durumunda Türkiye’nin tamamında güneş enerjisi yatırımı
yapılabileceği sonucuna varılmıştır.,There have been many milestones throughout the human history. These include; the
invention of the wheel, the discovery of fire, the invention of writing, the discovery
of gunpowder and the industrial revolution. With each turning point, mankind need
for energy has increased. Mankind have used the sun as the main source of energy
directly or indirectly from past to present. With the industrial revolution, mankind
have met this energy need with fossil sources for centuries. However, these fossil
sources cause enormous environmental problems (global warming, melting of
glaciers, extinction of living species, etc.). In addition, it is impossible to achieve
energy sustainability by using fossil fuels. All these reasons make it compulsory to
obtain energy from renewable energy sources.
Among renewable energy sources, wind and sun is precedence. In this study, the
status of solar energy in the World and Turkey were examined. Turkey, which has a
good position in terms of the potential of solar energy in the world seems unable to
make full use of this potential.
In this study; roof type solar power plant modeling is performed those installed
capacity with 1 Kw, 5 kW and 10 kW and connected to the city electrical network
in two different regions of Turkey, which have different solar radiation data as
Samsun, Bayburt (Black Sea region) and Mersin (Mediterranean region).
In addition, off-grid roof type SPP (Solar Power Plant) modeling has been performed
to meet the daily energy demand of 7,224 kWh. These models were made with
PVGIS, PVsyst and HOMER simulation programs. Mathematical calculations were
V
also performed for the roof type SPP, which is not connected to city electrical
network.
In this study, the investment feasibility levels of the roof type SPP models are
examined by making production and cost analyzes. By this examinations and datas
the investment feasibilitiy levels find out, for city of Samsun which has a solar
radiation data below the average of Turkey, for city of Bayburt which has a solar
radiation data close to the average of Turkey and inadequate use of solar energy
potential sufficiently and for city of Mersin which has a solar radiation data above
the average of Turkey.
According to simulation results; A payback period of approximately 2.7 years has
been determined between Mersin, where the highest energy production is obtained
from SPP and Samsun, where the least energy is obtained. However, repayment
periods exceeded 7-8 years which are considered as investment grade according to
both simulation programs and market researches. For this reason, the roof type SPP
is not considered investmentable for all these 3 cities. In this study, various
suggestions which are thought to contribute to the increase of roof type SPP
investments are presented.
Due to the high initial investment costs of the roof-type SPP, it is considered that
investments can be increased in this area if it is possible to return to the 7-8-year
recycling periods can be considered as investment grade. Otherwise, it is considered
that roof type SPP’s will not achieve the desired levels in the private sector and
residential areas except public investments.
If it can be turn back to the entire recycling time of 7-8 years which is accepted as
investment levels, all over the Turkey solar energy investment is possible to be done
as a result. |
en_US |
dc.description.abstract |
There have been many milestones throughout the human history. These include; the
invention of the wheel, the discovery of fire, the invention of writing, the discovery
of gunpowder and the industrial revolution. With each turning point, mankind need
for energy has increased. Mankind have used the sun as the main source of energy
directly or indirectly from past to present. With the industrial revolution, mankind
have met this energy need with fossil sources for centuries. However, these fossil
sources cause enormous environmental problems (global warming, melting of
glaciers, extinction of living species, etc.). In addition, it is impossible to achieve
energy sustainability by using fossil fuels. All these reasons make it compulsory to
obtain energy from renewable energy sources.
Among renewable energy sources, wind and sun is precedence. In this study, the
status of solar energy in the World and Turkey were examined. Turkey, which has a
good position in terms of the potential of solar energy in the world seems unable to
make full use of this potential.
In this study; roof type solar power plant modeling is performed those installed
capacity with 1 Kw, 5 kW and 10 kW and connected to the city electrical network
in two different regions of Turkey, which have different solar radiation data as
Samsun, Bayburt (Black Sea region) and Mersin (Mediterranean region).
In addition, off-grid roof type SPP (Solar Power Plant) modeling has been performed
to meet the daily energy demand of 7,224 kWh. These models were made with
PVGIS, PVsyst and HOMER simulation programs. Mathematical calculations were
V
also performed for the roof type SPP, which is not connected to city electrical
network.
In this study, the investment feasibility levels of the roof type SPP models are
examined by making production and cost analyzes. By this examinations and datas
the investment feasibilitiy levels find out, for city of Samsun which has a solar
radiation data below the average of Turkey, for city of Bayburt which has a solar
radiation data close to the average of Turkey and inadequate use of solar energy
potential sufficiently and for city of Mersin which has a solar radiation data above
the average of Turkey.
According to simulation results; A payback period of approximately 2.7 years has
been determined between Mersin, where the highest energy production is obtained
from SPP and Samsun, where the least energy is obtained. However, repayment
periods exceeded 7-8 years which are considered as investment grade according to
both simulation programs and market researches. For this reason, the roof type SPP
is not considered investmentable for all these 3 cities. In this study, various
suggestions which are thought to contribute to the increase of roof type SPP
investments are presented.
Due to the high initial investment costs of the roof-type SPP, it is considered that
investments can be increased in this area if it is possible to return to the 7-8-year
recycling periods can be considered as investment grade. Otherwise, it is considered
that roof type SPP’s will not achieve the desired levels in the private sector and
residential areas except public investments.
If it can be turn back to the entire recycling time of 7-8 years which is accepted as
investment levels, all over the Turkey solar energy investment is possible to be done
as a result. |
en_US |
dc.language.iso |
tur |
en_US |
dc.publisher |
Fen Bilimleri Enstitüsü |
en_US |
dc.rights |
info:eu-repo/semantics/openAccess |
en_US |
dc.subject |
Kategorik Değişken, Çapraz Tablo, İlişki Katsayısı, Simülasyon, Sıralı Değişken. |
en_US |
dc.subject |
Association Coefficient, Categorical Data, Cross Table, Simulation, Ordinal Data. Yayın Tarihi: 2020 |
en_US |
dc.title |
Samsun, Bayburt ve Mersin İllerine Kurulabilecek Güneş Enerjisi Santrallerinin Modellenmesi |
en_US |
dc.title.alternative |
MODELLING OF SOLAR POWER PLANTS THAT CAN BE INSTALLED IN SAMSUN, BAYBURT AND MERSIN PROVINCES OF TURKEY |
en_US |
dc.type |
masterThesis |
en_US |
dc.contributor.department |
Ordu Üniversitesi |
en_US |
dc.contributor.department |
Fen Bilimleri Enstitüsü |
en_US |