Abstract:
In this article, the exact solutions of the stochastic conformable Broer-Kaup equations with conformable derivatives which describe the bidirectional propagation of long waves in shallow water are obtained using the modified exponential function method and the generalized Kudryashov method. These exact solutions consist of hyperbolic, trigonometric, rational trigonometric, rational hyperbolic, and rational function solutions, respectively. This shows that the proposed methods are competent and sufficient. In addition, it is aimed to better understand the physical properties by drawing two- and three-dimensional graphics of the exact solutions according to different parameter values. When these exact solutions obtained by two different methods are compared with the solutions attained by other methods, it can be said that these two methods are competent.