dc.contributor.author |
Ergen, Seyda Fikirdesici |
|
dc.contributor.author |
Tunca, Esra Ucuncu |
|
dc.date.accessioned |
2024-03-15T11:53:34Z |
|
dc.date.available |
2024-03-15T11:53:34Z |
|
dc.date.issued |
2018 |
|
dc.identifier.citation |
Ergen, SF., Tunca, EÜ. (2018). Nanotoxicity modelling and removal efficiencies of ZnONP. Int. J. Phytoremediat., 20(1), 16-26. https://doi.org/10.1080/15226514.2017.1319324 |
en_US |
dc.identifier.issn |
1522-6514 |
|
dc.identifier.issn |
1549-7879 |
|
dc.identifier.uri |
http://dx.doi.org/10.1080/15226514.2017.1319324 |
|
dc.identifier.uri |
https://www.webofscience.com/wos/woscc/full-record/WOS:000426922300003 |
|
dc.identifier.uri |
http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/4577 |
|
dc.description |
WoS Categories: Environmental Sciences |
en_US |
dc.description |
Web of Science Index: Science Citation Index Expanded (SCI-EXPANDED) |
en_US |
dc.description |
Research Areas: Environmental Sciences & Ecology |
en_US |
dc.description.abstract |
In this paper the aim is to investigate the toxic effect of zinc oxide nanoparticles (ZnONPs) and is to analyze the removal of ZnONP in aqueous medium by the consortium consisted of Daphnia magna and Lemna minor. Three separate test groups are formed: L. minor (L), D. magna (D), and L. minor + D. magna (L+D) and all these test groups are exposed to three different nanoparticle concentrations (0.3; 3.0; and 30.0 mg L-1). Time-dependent, concentration-dependent, and group-dependent removal efficiencies are statistically compared by non-parametric Mann-Whitney U test and statistically significant differences are observed. The optimum removal values are observed at the highest concentration 97: 14ey U t % for L, 94: 51ey U t% for D; and 97: 27ey U t% for L+D and realized at 96 h for all test groups (96 h > 24 h > 188 h). There is no statistically significant differences in removal at low concentrations (0.3 and 3.0 mg L-1) in terms of groups but L test groups are more efficient than D test groups in removal of ZnONP, at 30.0 mg L-1 (L=L+D>D) concentration. Regression analysis is also performed for all prediction models. Different models are tested and it is seen that cubic models show the highest predicted values (R-2). In toxicity models, R-2 values are obtained at (0.892, 0.997) interval. A simple solution-phase method is used to synthesize ZnO nanoparticles. Dynamic Light Scattering and X-Ray Diffraction (XRD) are used to detect the particle size of synthesized ZnO nanoparticles. |
en_US |
dc.description.sponsorship |
TUBITAK (Scientific & Technological Research Council of Turkey) [115Y368] |
en_US |
dc.language.iso |
eng |
en_US |
dc.publisher |
TAYLOR & FRANCIS INC-PHILADELPHIA |
en_US |
dc.relation.isversionof |
10.1080/15226514.2017.1319324 |
en_US |
dc.rights |
info:eu-repo/semantics/openAccess |
en_US |
dc.subject |
consortium, estimation models, nanotoxicity, regresyon, remediation |
en_US |
dc.subject |
METAL-OXIDE NANOPARTICLES, CRUSTACEANS DAPHNIA-MAGNA, LEMNA-MINOR-L, CUO NANOPARTICLES, SILVER NANOPARTICLES, HEAVY-METALS, ARABIDOPSIS-THALIANA, CHROMOLAENA-ODORATA, EXPOSURE SCENARIOS, ESCHERICHIA-COLI |
en_US |
dc.title |
Nanotoxicity modelling and removal efficiencies of ZnONP |
en_US |
dc.type |
article |
en_US |
dc.relation.journal |
INTERNATIONAL JOURNAL OF PHYTOREMEDIATION |
en_US |
dc.contributor.department |
Ordu Üniversitesi |
en_US |
dc.contributor.authorID |
0000-0002-4623-1256 |
en_US |
dc.identifier.volume |
20 |
en_US |
dc.identifier.issue |
1 |
en_US |
dc.identifier.startpage |
16 |
en_US |
dc.identifier.endpage |
26 |
en_US |