Abstract:
Forecasting container throughput is critical for improved port planning, operations, and investment strategies. Reliability of forecasting methods need to be ensured before utilizing their outcomes in decision making. This study compares forecasting performances of various time series methods, namely auto regressive integrated moving average (ARIMA), seasonal ARIMA (SARIMA), Holt-Winter's Exponential Smoothing (HWES), and the Prophet model. Since forecast combinations can improve performance, simple and weighted combinations of ARIMA, SARIMA and HWES have been explored, too. Monthly container throughput data of port of Shanghai, Busan, and Nagoya are used. The Prophet model outperforms others in the in-sample forecasting, while combined models outperform others in the out-sample forecasting. Due to the observed differences between the in-sample and out-sample forecast accuracy measures, this study proposes a forecast performance metric consistency check approach for informed real-world applications of forecasting models in port management decision-making.& COPY; 2023 The Authors. Production and hosting by Elsevier B.V. on behalf of The Korean Association of Shipping and Logistics, Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).