dc.contributor.author |
Senyurt, Suleyman |
|
dc.contributor.author |
Caliskan, Abdussamet |
|
dc.date.accessioned |
2024-03-15T11:08:26Z |
|
dc.date.available |
2024-03-15T11:08:26Z |
|
dc.date.issued |
2022 |
|
dc.identifier.citation |
Senyurt, S., Çaliskan, A. (2022). The Dual Spherical Curves and Surfaces In Terms of Vectorial Moments. Appl. Appl. Math., 17(2), 591-600 |
en_US |
dc.identifier.issn |
1932-9466 |
|
dc.identifier.uri |
https://www.webofscience.com/wos/woscc/full-record/WOS:000920138000019 |
|
dc.identifier.uri |
http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/4397 |
|
dc.description |
WoS Categories: Mathematics, Applied |
en_US |
dc.description |
Web of Science Index: Emerging Sources Citation Index (ESCI) |
en_US |
dc.description |
Research Areas: Mathematics |
en_US |
dc.description.abstract |
In the article, the parametric expressions of the dual ruled surfaces are expressed in terms of the vectorial moments of the Frenet vectors. The integral invariants of these surfaces are calculated. It is seen that the dual parts of these invariants can be stated by the real terms. Finally, we present examples of the ruled surfaces with bases such as helix and Viviani's curves. |
en_US |
dc.language.iso |
eng |
en_US |
dc.publisher |
PRAIRIE VIEW A & M UNIV, DEPT MATHEMATICS-PRAIRIE VIEW |
en_US |
dc.rights |
info:eu-repo/semantics/openAccess |
en_US |
dc.subject |
Closed ruled surface, Gauss curvature, Drall, Dual spherical curves, Dual angle of pitch, Vectorial moment |
en_US |
dc.subject |
PITCH |
en_US |
dc.title |
The Dual Spherical Curves and Surfaces In Terms of Vectorial Moments |
en_US |
dc.type |
article |
en_US |
dc.relation.journal |
APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL |
en_US |
dc.contributor.department |
Ordu Üniversitesi |
en_US |
dc.identifier.volume |
17 |
en_US |
dc.identifier.issue |
2 |
en_US |
dc.identifier.startpage |
591 |
en_US |
dc.identifier.endpage |
600 |
en_US |