dc.contributor.author |
Sarihan, Ayse Guven |
|
dc.contributor.author |
Bandtlow, Oscar F. |
|
dc.date.accessioned |
2023-01-06T11:40:04Z |
|
dc.date.available |
2023-01-06T11:40:04Z |
|
dc.date.issued |
2021 |
|
dc.identifier.citation |
Sarihan, AG., Bandtlow, OF. (2021). Quantitative spectral perturbation theory for compact operators on a Hilbert space. Linear Algebra and Its Applications, 610, 169-202.Doi:10.1016/j.laa.2020.08.033 |
en_US |
dc.identifier.isbn |
0024-3795 |
|
dc.identifier.isbn |
1873-1856 |
|
dc.identifier.uri |
http://dx.doi.org/10.1016/j.laa.2020.08.033 |
|
dc.identifier.uri |
https://www.webofscience.com/wos/woscc/full-record/WOS:000596321700010 |
|
dc.identifier.uri |
http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/3554 |
|
dc.description |
WoS Categories : Mathematics, Applied; Mathematics
Web of Science Index : Science Citation Index Expanded (SCI-EXPANDED)
Research Areas : Mathematics
Open Access Designations : Green Submitted |
en_US |
dc.description.abstract |
We introduce compactness classes of Hilbert space operators by grouping together all operators for which the associated singular values decay at a certain speed and establish upper bounds for the norm of the resolvent of operators belonging to a particular compactness class. As a consequence we obtain explicitly computable upper bounds for the Hausdorff distance of the spectra of two operators belonging to the same compactness class in terms of the distance of the two operators in operator norm. (C) 2020 Published by Elsevier Inc. |
en_US |
dc.description.sponsorship |
Funding Orgs : EPSRC [EP/R012008/1]
Funding Name Preferred : EPSRC(UK Research & Innovation (UKRI)Engineering & Physical Sciences Research Council (EPSRC))
Funding Text : The research of OFB was supported by the EPSRC grant EP/R012008/1. Both authors would like to thank Titus Hilberdink and Eugene Shargorodsky for valuable feedback during the preparation of this article. |
en_US |
dc.language.iso |
eng |
en_US |
dc.publisher |
ELSEVIER SCIENCE INC NEW YORK |
en_US |
dc.relation.isversionof |
10.1016/j.laa.2020.08.033 |
en_US |
dc.rights |
info:eu-repo/semantics/openAccess |
en_US |
dc.subject |
Quantitative spectral perturbation theory; Resolvent bounds; Departure from normality; Spectral distance |
en_US |
dc.title |
Quantitative spectral perturbation theory for compact operators on a Hilbert space |
en_US |
dc.type |
article |
en_US |
dc.relation.journal |
LINEAR ALGEBRA AND ITS APPLICATIONS |
en_US |
dc.contributor.department |
Ordu Üniversitesi |
en_US |
dc.contributor.authorID |
0000-0002-0828-4429 |
en_US |
dc.identifier.volume |
610 |
en_US |
dc.identifier.startpage |
169 |
en_US |
dc.identifier.endpage |
202 |
en_US |