DSpace Repository

Quantitative spectral perturbation theory for compact operators on a Hilbert space

Show simple item record

dc.contributor.author Sarihan, Ayse Guven
dc.contributor.author Bandtlow, Oscar F.
dc.date.accessioned 2023-01-06T11:40:04Z
dc.date.available 2023-01-06T11:40:04Z
dc.date.issued 2021
dc.identifier.citation Sarihan, AG., Bandtlow, OF. (2021). Quantitative spectral perturbation theory for compact operators on a Hilbert space. Linear Algebra and Its Applications, 610, 169-202.Doi:10.1016/j.laa.2020.08.033 en_US
dc.identifier.isbn 0024-3795
dc.identifier.isbn 1873-1856
dc.identifier.uri http://dx.doi.org/10.1016/j.laa.2020.08.033
dc.identifier.uri https://www.webofscience.com/wos/woscc/full-record/WOS:000596321700010
dc.identifier.uri http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/3554
dc.description WoS Categories : Mathematics, Applied; Mathematics Web of Science Index : Science Citation Index Expanded (SCI-EXPANDED) Research Areas : Mathematics Open Access Designations : Green Submitted en_US
dc.description.abstract We introduce compactness classes of Hilbert space operators by grouping together all operators for which the associated singular values decay at a certain speed and establish upper bounds for the norm of the resolvent of operators belonging to a particular compactness class. As a consequence we obtain explicitly computable upper bounds for the Hausdorff distance of the spectra of two operators belonging to the same compactness class in terms of the distance of the two operators in operator norm. (C) 2020 Published by Elsevier Inc. en_US
dc.description.sponsorship Funding Orgs : EPSRC [EP/R012008/1] Funding Name Preferred : EPSRC(UK Research & Innovation (UKRI)Engineering & Physical Sciences Research Council (EPSRC)) Funding Text : The research of OFB was supported by the EPSRC grant EP/R012008/1. Both authors would like to thank Titus Hilberdink and Eugene Shargorodsky for valuable feedback during the preparation of this article. en_US
dc.language.iso eng en_US
dc.publisher ELSEVIER SCIENCE INC NEW YORK en_US
dc.relation.isversionof 10.1016/j.laa.2020.08.033 en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Quantitative spectral perturbation theory; Resolvent bounds; Departure from normality; Spectral distance en_US
dc.title Quantitative spectral perturbation theory for compact operators on a Hilbert space en_US
dc.type article en_US
dc.relation.journal LINEAR ALGEBRA AND ITS APPLICATIONS en_US
dc.contributor.department Ordu Üniversitesi en_US
dc.contributor.authorID 0000-0002-0828-4429 en_US
dc.identifier.volume 610 en_US
dc.identifier.startpage 169 en_US
dc.identifier.endpage 202 en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account