Abstract:
Deltamethrin (DEL) and thiacloprid (THIA) are commonly used synthetic insecticides in agriculture either separately or in combination. There is limited information in human cells for the effects of the mixture of DEL + THIA on oxidative stress. Therefore, the present study was designed to examine the effects of the mixture on cell proliferation and oxidative stress in human lung fibroblast cells. Human telomerase reverse transcriptase (hTERT)-expressing human lung fibroblasts, WTHBF-6 cells, were treated with 2.5 + 37.5, 5 + 75, 12.5 + 187.5, and 25 +375 mu M concentrations of DEL + THIA for the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay and 5 + 75, 12.5 + 187.5, and 25 + 375 mu M for lipid peroxidation and reduced glutathione (GSH) assays for 24, 48, and 72 h in the absence and presence of metabolizing fractions of the mammalian liver (S9 mixture). Both the mixture of DEL + THIA and their metabolites significantly reduced cell viability and induced cytotoxicity in WTHBF-6 cells, especially at higher concentrations. The mixture of DEL + THIA significantly decreased GSH levels at the highest concentration for all treatment times and at the highest two concentrations (12.5 + 187.5 and 25 + 375 mu M) for 72 h in the presence of S9 mixture. The highest concentration of DEL + THIA mixture caused a significant increase in malondialdehyde (MDA) level at 72 h in the absence of S9 mixture. There were also significant increases in MDA levels at the highest concentration for 48-h and all concentrations of DEL + THIA for 72-h treatment in WTHBF-6 cell cultures with S9. These data showed that the mixture of DEL + THIA and their metabolites can induce cytotoxicity and oxidative stress in human lung fibroblasts.