dc.contributor.author |
Dragomir, S. S. |
|
dc.contributor.author |
Gozpinar, A. |
|
dc.contributor.author |
Set, E. |
|
dc.date.accessioned |
2022-08-17T05:52:57Z |
|
dc.date.available |
2022-08-17T05:52:57Z |
|
dc.date.issued |
2019 |
|
dc.identifier.uri |
http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/853 |
|
dc.identifier.uri |
http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/2430 |
|
dc.description.abstract |
In this article, a general integral identity for twice differentiable mapping involving fractional integral operators is derived. Secondly by using this identity we obtain some new generalized Hermite-Hadamards type inequalities for functions whose absolute values of second derivatives are s-convex and concave. The main results generalize the existing Hermite-Hadamard type inequalities involving the Riemann-Liouville fractional integral. Also we point out, some results in this study in some special cases such as setting s = 1, lambda = alpha, sigma (0) = 1 and w = 0, more reasonable than those obtained in [8]. |
en_US |
dc.language.iso |
eng |
en_US |
dc.publisher |
COMENIUS UNIV, SCH MEDICINE, SPITALSKA 24, BRATISLAVA I, SK-813 72, SLOVAKIA |
en_US |
dc.rights |
info:eu-repo/semantics/closedAccess |
en_US |
dc.subject |
Hermite-Hadamard inequality; convex function; Holder inequality; Riemann-Liouville fractional integral; fractional integral operator |
en_US |
dc.title |
SOME GENERALIZED HERMITE-HADAMARD TYPE INEQUALITIES INVOLVING FRACTIONAL INTEGRAL OPERATOR FOR FUNCTIONS WHOSE SECOND DERIVATIVES IN ABSOLUTE VALUE ARE S-CONVEX |
en_US |
dc.type |
article |
en_US |
dc.relation.journal |
ACTA MATHEMATICA UNIVERSITATIS COMENIANAE |
en_US |
dc.contributor.department |
Ordu Üniversitesi |
en_US |
dc.contributor.authorID |
0000-0003-1364-5396 |
en_US |
dc.identifier.volume |
88 |
en_US |
dc.identifier.issue |
1 |
en_US |
dc.identifier.startpage |
87 |
en_US |
dc.identifier.endpage |
100 |
en_US |