dc.contributor.author |
Aytac, Aysun |
|
dc.contributor.author |
Ciftci, Canan |
|
dc.date.accessioned |
2022-08-17T05:33:51Z |
|
dc.date.available |
2022-08-17T05:33:51Z |
|
dc.date.issued |
2018 |
|
dc.identifier.uri |
http://doi.org/10.1142/S0129054118500260 |
|
dc.identifier.uri |
http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/2328 |
|
dc.description.abstract |
Let G be a graph and S subset of V(G). We define by < S > the subgraph of G induced by S. For each vertex u is an element of S and for each vertex v is an element of S\{u}, d((G, s\{u})())(u,v) is the length of the shortest path in < V(G) - ((S - {u}) - {v})> between u and v if such a path exists, and infinity otherwise. For a vertex u is an element of S, let omega((G, s\{u})) (u) = Sigma (v is an element of s\{u}) (1/2)(d) ((G, s\{u}) (u) (,v)-1) where (1/2)(infinity) = 0. Jager and Rautenbach [27] define a set S of vertices to be exponential independent if omega((G, s\{u})) (u) < 1 for every vertex u in S. The exponential independence number alpha(e)(G) of G is the maximum order of an exponential independent set. In this paper, we give a general theorem and we examine exponential independence number of some tree graphs and thorn graph of some graphs. |
en_US |
dc.language.iso |
eng |
en_US |
dc.publisher |
WORLD SCIENTIFIC PUBL CO PTE LTD, 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE |
en_US |
dc.relation.isversionof |
10.1142/S0129054118500260 |
en_US |
dc.rights |
info:eu-repo/semantics/closedAccess |
en_US |
dc.subject |
Graph theory; vulnerability; thorn graph; independence; domination; exponential independence; complex networks |
en_US |
dc.title |
Exponential Independence Number of Some Graphs |
en_US |
dc.type |
article |
en_US |
dc.relation.journal |
INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE |
en_US |
dc.contributor.department |
Ordu Üniversitesi |
en_US |
dc.identifier.volume |
29 |
en_US |
dc.identifier.issue |
7 |
en_US |
dc.identifier.startpage |
1151 |
en_US |
dc.identifier.endpage |
1164 |
en_US |