DSpace Repository

New Hermite-Hadamard type inequalities for product of different convex functions involving certain fractional integral operators

Show simple item record

dc.contributor.author Celik, Baris
dc.contributor.author Choi, Junesang
dc.contributor.author Set, Erhan
dc.date.accessioned 2022-08-17T05:23:50Z
dc.date.available 2022-08-17T05:23:50Z
dc.date.issued 2018
dc.identifier.uri http://doi.org/10.22436/jmcs.018.01.04
dc.identifier.uri http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/2267
dc.description.abstract We aim to establish new Hermite-Hadamard type inequalities for products of two different convex functions involving certain generalized fractional integral operators. The results presented here, being very general, are pointed out to be specialized to yield many new and known inequalities associated with some known fractional integral operators. en_US
dc.language.iso eng en_US
dc.publisher JOURNAL MATHEMATICS & COMPUTER SCIENCE-JMCS, JOURNAL MATHEMATICS & COMPUTER SCIENCE-JMCS, MAZANDARAN, 00000, IRAN en_US
dc.relation.isversionof 10.22436/jmcs.018.01.04 en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Convex function; s-convex function; Hermite-Hadamard type inequalities; fractional integral operators en_US
dc.title New Hermite-Hadamard type inequalities for product of different convex functions involving certain fractional integral operators en_US
dc.type article en_US
dc.relation.journal JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS en_US
dc.contributor.department Ordu Üniversitesi en_US
dc.contributor.authorID 0000-0001-5372-7543 en_US
dc.contributor.authorID 0000-0002-7240-7737 en_US
dc.contributor.authorID 0000-0003-1364-5396 en_US
dc.identifier.volume 18 en_US
dc.identifier.issue 1 en_US
dc.identifier.startpage 29 en_US
dc.identifier.endpage 36 en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account