dc.contributor.author |
Buyukkaragoz, Aziz |
|
dc.contributor.author |
Unluyol, Erdal |
|
dc.date.accessioned |
2022-08-17T05:22:23Z |
|
dc.date.available |
2022-08-17T05:22:23Z |
|
dc.date.issued |
2020 |
|
dc.identifier.uri |
http://doi.org/10.1002/num.22665 |
|
dc.identifier.uri |
http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/2256 |
|
dc.description.abstract |
First, It is proved that there are no second and third order elliptic elements under conditions of n | N and n inverted iota 24 in Gamma(0,n)(N). Gamma(0,n)(N) is a subset of group Gamma(0)(N) and n, N is an element of Z(+). Second we define an invariant equivalence relation on (Q) over cap (N) of Gamma(0)(N), and obtain some properties. Third we again define an invariant equivalence relation on (Q) over cap (N) of group (Gamma) over cap (0,n)(N). Then we investigate its suborbital graphs. Finally we research some properties of graph F-u,N(*) for n | N and n inverted iota 24, n, N is an element of Z(+). |
en_US |
dc.language.iso |
eng |
en_US |
dc.publisher |
WILEY, 111 RIVER ST, HOBOKEN 07030-5774, NJ USA |
en_US |
dc.relation.isversionof |
10.1002/num.22665 |
en_US |
dc.rights |
info:eu-repo/semantics/openAccess |
en_US |
dc.subject |
congruence subgroup; elliptic elements; extended modular group; forest; imprimitive action; modular group; suborbital graph |
en_US |
dc.title |
Elliptic elements of Gamma boolean AND 0,n(N), act on DOUBLE-STRUCK CAPITAL Q boolean AND(N) and suborbital graphs of Gamma boolean AND 0,n(N) on the group DOUBLE-STRUCK CAPITAL Q boolean AND(N) |
en_US |
dc.type |
article |
en_US |
dc.relation.journal |
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS |
en_US |
dc.contributor.department |
Ordu Üniversitesi |
en_US |
dc.contributor.authorID |
0000-0002-6370-2363 |
en_US |
dc.contributor.authorID |
0000-0003-3465-6473 |
en_US |