DSpace Repository

Elliptic elements of Gamma boolean AND 0,n(N), act on DOUBLE-STRUCK CAPITAL Q boolean AND(N) and suborbital graphs of Gamma boolean AND 0,n(N) on the group DOUBLE-STRUCK CAPITAL Q boolean AND(N)

Show simple item record

dc.contributor.author Buyukkaragoz, Aziz
dc.contributor.author Unluyol, Erdal
dc.date.accessioned 2022-08-17T05:22:23Z
dc.date.available 2022-08-17T05:22:23Z
dc.date.issued 2020
dc.identifier.uri http://doi.org/10.1002/num.22665
dc.identifier.uri http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/2256
dc.description.abstract First, It is proved that there are no second and third order elliptic elements under conditions of n | N and n inverted iota 24 in Gamma(0,n)(N). Gamma(0,n)(N) is a subset of group Gamma(0)(N) and n, N is an element of Z(+). Second we define an invariant equivalence relation on (Q) over cap (N) of Gamma(0)(N), and obtain some properties. Third we again define an invariant equivalence relation on (Q) over cap (N) of group (Gamma) over cap (0,n)(N). Then we investigate its suborbital graphs. Finally we research some properties of graph F-u,N(*) for n | N and n inverted iota 24, n, N is an element of Z(+). en_US
dc.language.iso eng en_US
dc.publisher WILEY, 111 RIVER ST, HOBOKEN 07030-5774, NJ USA en_US
dc.relation.isversionof 10.1002/num.22665 en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject congruence subgroup; elliptic elements; extended modular group; forest; imprimitive action; modular group; suborbital graph en_US
dc.title Elliptic elements of Gamma boolean AND 0,n(N), act on DOUBLE-STRUCK CAPITAL Q boolean AND(N) and suborbital graphs of Gamma boolean AND 0,n(N) on the group DOUBLE-STRUCK CAPITAL Q boolean AND(N) en_US
dc.type article en_US
dc.relation.journal NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS en_US
dc.contributor.department Ordu Üniversitesi en_US
dc.contributor.authorID 0000-0002-6370-2363 en_US
dc.contributor.authorID 0000-0003-3465-6473 en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account