dc.contributor.author |
Aytac, A. |
|
dc.contributor.author |
Ciftci, C. |
|
dc.date.accessioned |
2022-08-17T05:13:10Z |
|
dc.date.available |
2022-08-17T05:13:10Z |
|
dc.date.issued |
2020 |
|
dc.identifier.uri |
http://doi.org/10.1134/S0001434620010228 |
|
dc.identifier.uri |
http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/2207 |
|
dc.description.abstract |
A porous exponential dominating set of a graph G is a subset S such that, for every vertex v of G, n-ary sumation (u is an element of S)(1/2)(d(u, v)-1) >= l, where d(u, v) is the distance between vertices u and v. The porous exponential domination number, gamma e*(G), is the minimum cardinality of a porous exponential dominating set. In this paper, we determine porous exponential domination number of the Harary graph H-k,H-n for all k and n. |
en_US |
dc.language.iso |
eng |
en_US |
dc.publisher |
MAIK NAUKA/INTERPERIODICA/SPRINGER, 233 SPRING ST, NEW YORK, NY 10013-1578 USA |
en_US |
dc.relation.isversionof |
10.1134/S0001434620010228 |
en_US |
dc.rights |
info:eu-repo/semantics/openAccess |
en_US |
dc.subject |
graph theory; porous exponential domination; Harary graph |
en_US |
dc.title |
Porous Exponential Domination in Harary Graphs |
en_US |
dc.type |
article |
en_US |
dc.relation.journal |
MATHEMATICAL NOTES |
en_US |
dc.contributor.department |
Ordu Üniversitesi |
en_US |
dc.contributor.authorID |
0000-0001-5397-0367 |
en_US |
dc.identifier.volume |
107 |
en_US |
dc.identifier.issue |
1-2 |
en_US |
dc.identifier.startpage |
231 |
en_US |
dc.identifier.endpage |
237 |
en_US |