dc.contributor.author |
Iscan, Imdat |
|
dc.contributor.author |
Maden, Selahattin |
|
dc.contributor.author |
Turhan, Sercan |
|
dc.date.accessioned |
2022-08-16T13:23:26Z |
|
dc.date.available |
2022-08-16T13:23:26Z |
|
dc.date.issued |
2017 |
|
dc.identifier.uri |
http://doi.org/10.2298/FIL1719945I |
|
dc.identifier.uri |
http://www.doiserbia.nb.rs/Article.aspx?ID=0354-51801719945I#.YH6QN-gzaUl |
|
dc.identifier.uri |
http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/2198 |
|
dc.description.abstract |
In this paper, we give a new concept which is a generalization of the concepts quasi-convexity and harmonically quasi-convexity and establish a new identity. A consequence of the identity is that we obtain some new general inequalities containing all of the Hermite-Hadamard and Simpson-like type for functions whose derivatives in absolute value at certain power are p-quasi-convex. Some applications to special means of real numbers are also given. |
en_US |
dc.language.iso |
eng |
en_US |
dc.publisher |
UNIV NIS, FAC SCI MATH, PO BOX 224, VISEGRADSKA 33, NIS, 18000, SERBIA MONTENEG |
en_US |
dc.relation.isversionof |
10.2298/FIL1719945I |
en_US |
dc.rights |
info:eu-repo/semantics/openAccess |
en_US |
dc.subject |
p-quasi-convex functions; Hermite-Hadamard type inequality; Simpson inequality |
en_US |
dc.title |
Hermite-Hadamard and Simpson-like Type Inequalities for Differentiable p-quasi-convex Functions |
en_US |
dc.type |
article |
en_US |
dc.relation.journal |
FILOMAT |
en_US |
dc.contributor.department |
Ordu Üniversitesi |
en_US |
dc.contributor.authorID |
0000-0001-6749-0591 |
en_US |
dc.contributor.authorID |
0000-0002-0932-359X |
en_US |
dc.identifier.volume |
31 |
en_US |
dc.identifier.issue |
19 |
en_US |
dc.identifier.startpage |
5945 |
en_US |
dc.identifier.endpage |
5953 |
en_US |