Abstract:
In the present note, firstly we established a generalization of Hermite Hadamard's inequality for s-convex functions via conformable fractional integrals which generalized Riemann-Liouville fractional integrals. Secondly, we proved new identity involving conformable fractional integrals via beta and incompleted beta functions. Then, by using this identity, some Hermite Hadamard type integral inequalities for s-convex functions in the second sense are obtained.