Abstract:
Objectives. The aim of this study was to compare the effects of different bulk-fill resin composites, polimerization modes, and the thickness of remaining dentin on the increase of intrapulpal temperature. Methods. Human-extracted upper premolar teeth (n = 10) were used to design a single-tooth model with remaining dentin thicknesses of 1 mm and 0.5 mm. Estelite Bulk-fill Flow (Tokuyama, Japan), Surefil SDR (TM) Flow (Dentsply Caulk, Brazil), Filtek Bulk-Fill Posterior (3M, USA), and SonicFill (TM) 2 Bulk-fill (Kerr, USA) composites were applied according to the manufacturer's instructions. The standard and high modes of a light emitted diode (LED) light curing unit (LCU) (VALO (TM) Utradent, USA), were used for polymerization. In order to mimic the in vivo conditions of pulpal circulation, digital flowmetry (SK-600II, SK Medical, China) was used. Intrapulpal temperature rise was measured using K type thermocoupling (CEM DT 610B, Robosem Engineering, China). Data were analyzed using three-way variance analysis (ANOVA) and the independent t-test. Results. No significant statistical differences in intrapulpal temperature rise between low viscosity bulk-fill composites (SDR and Estelite) were found. The lowest intrapulpal temperature rise was found in groups which used the Filtek Bulk-fill composite. Decreases in the remaining dentin thickness increased the intrapulpal temperature rise. Significance. This study demonstrated that remaining dentin thickness, filler ratio of bulk-fill composites, and power and application time of the LED-LCU may affect intrapulpal temperature rise.