Please use this identifier to cite or link to this item: http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/922
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorÜnlüyol, Erdal-
dc.contributor.authorKara, Ahmet Adnan-
dc.date.accessioned2022-08-12T05:24:17Z-
dc.date.available2022-08-12T05:24:17Z-
dc.date.issued2016-
dc.date.submitted2016-
dc.identifier.citationKara, A.A. (2016) Hilbert Uzayında Simetrik Bir Operatörün Sınır Değer Şartları Altında Genişlemeleri ve Spektral Yapısı. Ordu Üniversitesi Fen Bilimleri Enstitüsüen_US
dc.identifier.urihttp://earsiv.odu.edu.tr:8080/xmlui/handle/11489/922-
dc.description.abstractBu tezde, soyut simetrik operatörlerin genişleme teorisinden bahsedilmiştir. Fakat burada geleneksel durumdan farklı bir yaklaşım yapılmış ve sınır değer problemleri teorisine adapte edilmiştir. Genişlemelerin bazı sınıflarının yani maksimal dissipativ ve öz-eşlenik genişlemeler gibi genişlemelerin tanımlarının yanı sıra bu sınıfların genişlemelerinin spektrum yapısı sınır değerler uzayı olarak adlandırılan ifadeyle verilmiştir. Daha sonra bazı belirli durumlarda alışılmış sınır şartlarına dönüştüğü için yapılan bu çalışma tutarlı ve doğaldır. Burada önemli bir yer bir Hilbert uzayında ikili bağıntıların çeşitli gösterimleri hakkındaki teoremler tarafından yapılmış olmasıdır. Bundan dolayı da burada yapılanlar genişleme teorisinin yapısının bir başlangıç noktasıdır.en_US
dc.description.abstractIn this thesis, it is devoted to the theory of extensions of abstract symmetric operators. Its presentation somewhat differs from the traditional one and is adapted to the theory of boundary value problems. The description of various classes of extensions, such a maximal dissipative and self-adjoint, as well as the structure of the spectrum of extensions from these classes, is given in terms of so-called to the boundary value spaces. The latter are convenient and natural because they runing to the usual boundary condition in certain concrete situations. Here, an important place is occupied by theorems about various representations of binary relations in a Hilbert space. These are the starting point in constructing the theory of extensions.en_US
dc.language.isoturen_US
dc.publisherOrdu Üniversitesi Fen Bilimleri Enstitüsüen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectHilbert uzayı, simetrik operatör, genişleme, dissipativ ve özeşlenik genişleme, sınır değer uzayı.en_US
dc.subject: Hilbert uzayı, simetrik operatör, genişleme, dissipativ ve özeşlenik genişleme, sınır değer uzayı.en_US
dc.titleHilbert Uzayında Simetrik Bir Operatörün Sınır Değer Şartları Altında Genişlemeleri ve Spektral Yapısıen_US
dc.title.alternativeExtensıons of A Symmetrıc Operator In Terms of Boundary Condıtons and Its Spectral Structure in Hilbert Spaceen_US
dc.typemasterThesisen_US
dc.contributor.departmentOrdu Üniversitesien_US
dc.contributor.departmentFen Bilimleri Enstitüsüen_US
Appears in Collections:Fen Bilimleri Enstitüsü

Files in This Item:
File Description SizeFormat 
431009.pdf4310092.38 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.