Please use this identifier to cite or link to this item:
http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/5298
Title: | Histomorphometric and biomechanical evaluation of the osseointegration around micro- and nano-level boron-nitride coated titanium dental implants |
Authors: | Ozmeric, Nurdan Cakal, Gaye Ozgur Gokmenoglu, Ceren Ozmeric, Ahmet Oduncuoglu, Bahar Fusun Hacaloglu, Tugce Kaftanoglu, Bilgin Ordu Üniversitesi 0000-0002-3803-7189 0000-0003-1098-8318 0000-0001-7000-9594 |
Keywords: | Animal model, Boron nitrite, Dental implants, Osseointegration BONE INTEGRATION, ALLOY |
Issue Date: | 2022 |
Publisher: | ELSEVIER-AMSTERDAM |
Citation: | Özmeriç, N., Çakal, GÖ., Gökmenoglu, C., Özmeriç, A., Oduncuoglu, BF., Hacaloglu, T., Kaftanoglu, B. (2022). Histomorphometric and biomechanical evaluation of the osseointegration around micro- and nano-level boron-nitride coated titanium dental implants. J. Stomatol. Oral Maxillofac. Surg., 123(6), E694-E700. https://doi.org/10.1016/j.jormas.2022.06.016 |
Abstract: | Introduction: Titanium dental implants has been coated with different materials such as polymers and biomi-metic agents, bone morphogenetic protein, calcium phosphate to enhance surface properties of the titanium implants for osseointegration. The aim of this study was to evaluate the bone tissue healing around Boron Nitride-coated (BN-coated) titanium implants histomorphometrically and biomechanically and also observe the effect of different coating thicknesses on osseointegration. Materials and methods: BN was coated on dental titanium implants with two different coating thicknesses by using RF magnetron sputtering system. Totally fifty-four implants were inserted into the tibias' of 12 New Zealand rabbits bilaterally under general anesthesia. All animals were sacrificed after 4-weeks. Bone-implant contact (BIC) and new bone area/total area ratios (BATA) were calculated. Also, the removal torque (RT) test was performed. Results: The highest new bone area in the medullary cavity was around the nano-BN-coated surface with 15.70%. In micro-BN-coated surface and control group, this ratio was determined as 10.48% and 8.23%, respectively. The BIC ratios in upper-side of implants and cortical-associated BIC ratios in lower-side were found significantly higher in control and micro-BN-coated group than nano-BN-coated group (p > 0.05). Sim-ilar BIC values were observed between control and micro-BN-coated groups (p > 0.05). BATA values did not show statistically significant differences between all three groups (p > 0.05). The RT values measured in all groups were found comparable and no statistically significant differences were found (p > 0.05). Conclusion: No inflammatory reaction developed around any implant. Relatively more new bone formation around nano-BN-coated titanium implants indicates the promising osseoinductive effect of BN coating. BN-coated implants showed similar biomechanical and histomorphometrical outcomes to that of the conven-tional titanium implants through a 4-week evaluation period. (c) 2022 Elsevier Masson SAS. All rights reserved. |
Description: | WoS Categories: Dentistry, Oral Surgery & Medicine Web of Science Index: Science Citation Index Expanded (SCI-EXPANDED) Research Areas: Dentistry, Oral Surgery & Medicine |
URI: | http://dx.doi.org/10.1016/j.jormas.2022.06.016 https://www.webofscience.com/wos/woscc/full-record/WOS:000898464500018 http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/5298 |
ISSN: | 2468-8509 2468-7855 |
Appears in Collections: | Pedodonti |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.