Please use this identifier to cite or link to this item: http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/5236
Title: Bernstein operator method for approximate solution of singularly perturbed Volterra integral equations
Authors: Usta, Fuat
Akyigit, Mahmut
Say, Fatih
Ansari, Khursheed J.
Ordu Üniversitesi
0000-0003-4564-6211
0000-0002-8398-365X
Keywords: Bernstein's approximation, Numerical method, Asymptotics, Singularly perturbed integral equation, Convergence analysis
INTEGRODIFFERENTIAL EQUATION, NUMERICAL-SOLUTION, SYSTEMS
Issue Date: 2022
Publisher: ACADEMIC PRESS INC ELSEVIER SCIENCE-SAN DIEGO
Citation: Usta, F., Akyigit, M., Say, F., Ansari, KJ. (2022). Bernstein operator method for approximate solution of singularly perturbed Volterra integral equations. J. Math. Anal. Appl., 507(2). https://doi.org/10.1016/j.jmaa.2021.125828
Abstract: An approximate solution of integral equations takes an active role in the numerical analysis. This paper presents and tests an algorithm for the approximate solution of singularly perturbed Volterra integral equations via the Bernstein approximation technique. The method of computing the numerical approximation of the solution is properly demonstrated and exemplified in the matrix notation. Besides, the error bound and convergence associated with the numerical scheme are constituted. Finally, particular examples indicate the dependability and numerical capability of the introduced scheme in comparison with other numerical techniques. (C) 2021 Elsevier Inc. All rights reserved.
Description: WoS Categories: Mathematics, Applied; Mathematics
Web of Science Index: Science Citation Index Expanded (SCI-EXPANDED)
Research Areas: Mathematics
URI: http://dx.doi.org/10.1016/j.jmaa.2021.125828
https://www.webofscience.com/wos/woscc/full-record/WOS:000775539700026
http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/5236
ISSN: 0022-247X
1096-0813
Appears in Collections:Matematik

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.