Please use this identifier to cite or link to this item: http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/5203
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYasa, Yasin-
dc.contributor.authorCelik, Ozer-
dc.contributor.authorBayrakdar, Ibrahim Sevki-
dc.contributor.authorPekince, Adem-
dc.contributor.authorOrhan, Kaan-
dc.contributor.authorAkarsu, Serdar-
dc.contributor.authorAtasoy, Samet-
dc.contributor.authorBilgir, Elif-
dc.contributor.authorOdabas, Alper-
dc.contributor.authorAslan, Ahmet Faruk-
dc.date.accessioned2024-03-26T06:48:20Z-
dc.date.available2024-03-26T06:48:20Z-
dc.date.issued2021-
dc.identifier.citationYasa, Y., Çelik, Ö., Bayrakdar, IS., Pekince, A., Orhan, K., Akarsu, S., Atasoy, S., Bilgir, E., Odabas, A., Aslan, AF. (2021). An artificial intelligence proposal to automatic teeth detection and numbering in dental bite-wing radiographs. Acta Odontol. Scand., 79(4), 275-281. https://doi.org/10.1080/00016357.2020.1840624en_US
dc.identifier.issn0001-6357-
dc.identifier.issn1502-3850-
dc.identifier.urihttp://dx.doi.org/10.1080/00016357.2020.1840624-
dc.identifier.urihttps://www.webofscience.com/wos/woscc/full-record/WOS:000588525100001-
dc.identifier.urihttp://earsiv.odu.edu.tr:8080/xmlui/handle/11489/5203-
dc.descriptionWoS Categories: Dentistry, Oral Surgery & Medicineen_US
dc.descriptionWeb of Science Index: Science Citation Index Expanded (SCI-EXPANDED)en_US
dc.descriptionResearch Areas: Dentistry, Oral Surgery & Medicineen_US
dc.description.abstractObjectives Radiological examination has an important place in dental practice, and it is frequently used in intraoral imaging. The correct numbering of teeth on radiographs is a routine practice that takes time for the dentist. This study aimed to propose an automatic detection system for the numbering of teeth in bitewing images using a faster Region-based Convolutional Neural Networks (R-CNN) method. Methods The study included 1125 bite-wing radiographs of patients who attended the Faculty of Dentistry of Eskisehir Osmangazi University from 2018 to 2019. A faster R-CNN an advanced object identification method was used to identify the teeth. The confusion matrix was used as a metric and to evaluate the success of the model. Results The deep CNN system (CranioCatch, Eskisehir, Turkey) was used to detect and number teeth in bitewing radiographs. Of 715 teeth in 109 bite-wing images, 697 were correctly numbered in the test data set. The F1 score, precision and sensitivity were 0.9515, 0.9293 and 0.9748, respectively. Conclusions A CNN approach for the analysis of bitewing images shows promise for detecting and numbering teeth. This method can save dentists time by automatically preparing dental charts.en_US
dc.language.isoengen_US
dc.publisherTAYLOR & FRANCIS LTD-ABINGDONen_US
dc.relation.isversionof10.1080/00016357.2020.1840624en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectArtificial intelligence, deep learning, tooth detection, bite-wing radiographyen_US
dc.subjectCLASSIFICATIONen_US
dc.titleAn artificial intelligence proposal to automatic teeth detection and numbering in dental bite-wing radiographsen_US
dc.typearticleen_US
dc.relation.journalACTA ODONTOLOGICA SCANDINAVICAen_US
dc.contributor.departmentOrdu Üniversitesien_US
dc.contributor.authorID0000-0002-7816-1635en_US
dc.contributor.authorID0000-0001-5036-9867en_US
dc.contributor.authorID0000-0002-4409-3101en_US
dc.contributor.authorID0000-0001-6768-0176en_US
dc.contributor.authorID0000-0002-9757-5331en_US
dc.contributor.authorID0000-0002-7439-1046en_US
dc.identifier.volume79en_US
dc.identifier.issue4en_US
dc.identifier.startpage275en_US
dc.identifier.endpage281en_US
Appears in Collections:Ağız, Diş ve Çene Radyolojisi

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.