Please use this identifier to cite or link to this item:
http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/5020
Title: | On the Integral Inequalities for Riemann-Liouville and Conformable Fractional Integrals |
Authors: | Ozdemir, M. Emin Akdemir, Ahmet Ocak Set, Erhan Ekinci, Alper Ordu Üniversitesi 0000-0003-2466-0508 0000-0003-1364-5396 |
Keywords: | CONVEX-FUNCTIONS |
Issue Date: | 2018 |
Publisher: | BIRKHAUSER-SINGAPORE |
Citation: | Ozdemir, ME., Akdemir, AO., Set, E., Ekinci, A. (2018). On the Integral Inequalities for Riemann-Liouville and Conformable Fractional Integrals. , 165-198. https://doi.org/10.1007/978-981-13-3013-1_9 |
Abstract: | An integral operator is sometimes called an integral transformation. In the fractional analysis, Riemann-Liouville integral operator (transformation) of fractional integral is defined as S-alpha(x) = 1/Gamma(x) integral(x)(0) (x - t)(alpha-1) f(t)dt where f(t) is any integrable function on [0, 1] and alpha > 0, t is in domain of f. |
Description: | WoS Categories: Mathematics Web of Science Index: Book Citation Index – Science (BKCI-S) Research Areas: Mathematics |
URI: | http://dx.doi.org/10.1007/978-981-13-3013-1_9 https://www.webofscience.com/wos/woscc/full-record/WOS:000620217200009 http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/5020 |
ISBN: | 978-981-13-3013-1; 978-981-13-3012-4 |
ISSN: | 2297-0215 2297-024X |
Appears in Collections: | Matematik |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.