Please use this identifier to cite or link to this item: http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/5020
Title: On the Integral Inequalities for Riemann-Liouville and Conformable Fractional Integrals
Authors: Ozdemir, M. Emin
Akdemir, Ahmet Ocak
Set, Erhan
Ekinci, Alper
Ordu Üniversitesi
0000-0003-2466-0508
0000-0003-1364-5396
Keywords: CONVEX-FUNCTIONS
Issue Date: 2018
Publisher: BIRKHAUSER-SINGAPORE
Citation: Ozdemir, ME., Akdemir, AO., Set, E., Ekinci, A. (2018). On the Integral Inequalities for Riemann-Liouville and Conformable Fractional Integrals. , 165-198. https://doi.org/10.1007/978-981-13-3013-1_9
Abstract: An integral operator is sometimes called an integral transformation. In the fractional analysis, Riemann-Liouville integral operator (transformation) of fractional integral is defined as S-alpha(x) = 1/Gamma(x) integral(x)(0) (x - t)(alpha-1) f(t)dt where f(t) is any integrable function on [0, 1] and alpha > 0, t is in domain of f.
Description: WoS Categories: Mathematics
Web of Science Index: Book Citation Index – Science (BKCI-S)
Research Areas: Mathematics
URI: http://dx.doi.org/10.1007/978-981-13-3013-1_9
https://www.webofscience.com/wos/woscc/full-record/WOS:000620217200009
http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/5020
ISBN: 978-981-13-3013-1; 978-981-13-3012-4
ISSN: 2297-0215
2297-024X
Appears in Collections:Matematik

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.