Please use this identifier to cite or link to this item: http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/4934
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSenyurt, Suleyman-
dc.contributor.authorKilicoglu, Seyda-
dc.date.accessioned2024-03-25T06:16:25Z-
dc.date.available2024-03-25T06:16:25Z-
dc.date.issued2017-
dc.identifier.citationSenyurt, S., Kiliçoglu, S. (2017). AN EXAMINATION ON HELIX AS INVOLUTE, BERTRAND MATE AND MANNHEIM PARTNER OF ANY CURVE α IN E3. Bull. Math. Anal. Appl., 9(2), 24-29en_US
dc.identifier.issn1821-1291-
dc.identifier.urihttps://www.webofscience.com/wos/woscc/full-record/WOS:000406617200003-
dc.identifier.urihttp://earsiv.odu.edu.tr:8080/xmlui/handle/11489/4934-
dc.descriptionWoS Categories: Mathematicsen_US
dc.descriptionWeb of Science Index: Emerging Sources Citation Index (ESCI)en_US
dc.descriptionResearch Areas: Mathematicsen_US
dc.description.abstractIn this study we consider three offset curves of a curve a such as the involute curve alpha*, Bertrand mate alpha(1) and Mannheim partner alpha(2). We examined and find the conditions of Frenet apparatus of any curve alpha which has the involute curve a*, Bertrand mate alpha* and Mannheim partner alpha(2) are the general helix.en_US
dc.language.isoengen_US
dc.publisherINT CENTER SCIENTIFIC RESEARCH & STUDIES-IRBIDen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.titleAN EXAMINATION ON HELIX AS INVOLUTE, BERTRAND MATE AND MANNHEIM PARTNER OF ANY CURVE α IN E3en_US
dc.typearticleen_US
dc.relation.journalBULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONSen_US
dc.contributor.departmentOrdu Üniversitesien_US
dc.identifier.volume9en_US
dc.identifier.issue2en_US
dc.identifier.startpage24en_US
dc.identifier.endpage29en_US
Appears in Collections:Matematik

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.