Please use this identifier to cite or link to this item: http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/4927
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBektas, Ozcan-
dc.contributor.authorSenyurt, Suleyman-
dc.date.accessioned2024-03-25T06:15:26Z-
dc.date.available2024-03-25T06:15:26Z-
dc.date.issued2012-
dc.identifier.citationBektas, Ö., Senyurt, S. (2012). On Some Characterizations of Ruled Surface of a Closed Timelike Curve in Dual Lorentzian Space. Adv. Appl. Clifford Algebr., 22(4), 939-953. https://doi.org/10.1007/s00006-012-0327-7en_US
dc.identifier.issn0188-7009-
dc.identifier.urihttp://dx.doi.org/10.1007/s00006-012-0327-7-
dc.identifier.urihttps://www.webofscience.com/wos/woscc/full-record/WOS:000310639000002-
dc.identifier.urihttp://earsiv.odu.edu.tr:8080/xmlui/handle/11489/4927-
dc.descriptionWoS Categories: Mathematics, Applied; Physics, Mathematicalen_US
dc.descriptionWeb of Science Index: Science Citation Index Expanded (SCI-EXPANDED)en_US
dc.descriptionResearch Areas: Mathematics; Physicsen_US
dc.description.abstractIn this paper, we investigate the relations between the pitch, the angle of pitch and drall of parallel ruled surface of a closed curve in dual Lorentzian space.en_US
dc.language.isoengen_US
dc.publisherSPRINGER BASEL AG-BASELen_US
dc.relation.isversionof10.1007/s00006-012-0327-7en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectTimelike dual curve, ruled surface, Lorentzian space, dual numbersen_US
dc.subjectPITCHen_US
dc.titleOn Some Characterizations of Ruled Surface of a Closed Timelike Curve in Dual Lorentzian Spaceen_US
dc.typearticleen_US
dc.relation.journalADVANCES IN APPLIED CLIFFORD ALGEBRASen_US
dc.contributor.departmentOrdu Üniversitesien_US
dc.contributor.authorID0000-0002-2483-1939en_US
dc.contributor.authorID0000-0003-1097-5541en_US
dc.identifier.volume22en_US
dc.identifier.issue4en_US
dc.identifier.startpage939en_US
dc.identifier.endpage953en_US
Appears in Collections:Matematik

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.