Please use this identifier to cite or link to this item:
http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/4440
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ozturk, Hasen Mekki | - |
dc.date.accessioned | 2024-03-15T11:13:55Z | - |
dc.date.available | 2024-03-15T11:13:55Z | - |
dc.date.issued | 2023 | - |
dc.identifier.citation | Öztürk, HM. (2023). On a conjecture of Davies and Levitin. Math. Meth. Appl. Sci., 46(4), 4391-4412. https://doi.org/10.1002/mma.8766 | en_US |
dc.identifier.issn | 0170-4214 | - |
dc.identifier.issn | 1099-1476 | - |
dc.identifier.uri | http://dx.doi.org/10.1002/mma.8766 | - |
dc.identifier.uri | https://www.webofscience.com/wos/woscc/full-record/WOS:000871215300001 | - |
dc.identifier.uri | http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/4440 | - |
dc.description | WoS Categories: Mathematics, Applied | en_US |
dc.description | Web of Science Index: Science Citation Index Expanded (SCI-EXPANDED) | en_US |
dc.description | Research Areas: Mathematics | en_US |
dc.description.abstract | Let Hc$$ {H}_c $$ be a (2n)x(2n)$$ (2n)\times (2n) $$ symmetric tridiagonal matrix with diagonal elements c is an element of Double-struck capital R$$ c\in \mathbb{R} $$ and off-diagonal elements one, and S$$ S $$ be a (2n)x(2n)$$ (2n)\times (2n) $$ diagonal matrix with the first n$$ n $$ diagonal elements being plus ones and the last n$$ n $$ being minus ones. Davies and Levitin studied the eigenvalues of a linear pencil Ac=Hc-lambda S$$ {\mathcal{A}}_c={H}_c-\lambda S $$ as 2n$$ 2n $$ approaches to infinity. It was conjectured by DL that for any n is an element of N$$ n\in \mathbb{N} $$ the non-real eigenvalues lambda$$ \lambda $$ of Ac$$ {\mathcal{A}}_c $$ satisfy both |lambda+c|<2$$ \mid \lambda +c\mid and |lambda-c|<2$$ \mid \lambda -c\mid . The conjecture has been verified numerically for a wide range of n$$ n $$ and c$$ c $$, but so far the full proof is missing. The purpose of the paper is to support this conjecture with a partial proof and several numerical experiments which allow to get some insight in the behaviour of the non-real eigenvalues of Ac$$ {\mathcal{A}}_c $$. We provide a proof of the conjecture for n <= 3$$ n\le 3 $$, and also in the case where |lambda+c|=|lambda-c|$$ \mid \lambda +c\mid =\mid \lambda -c\mid $$. In addition, numerics indicate that some phenomena may occur for more general linear pencils. | en_US |
dc.description.sponsorship | Ministry of National Education of the Republic of Turkiye | en_US |
dc.language.iso | eng | en_US |
dc.publisher | WILEY-HOBOKEN | en_US |
dc.relation.isversionof | 10.1002/mma.8766 | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | chebyshev polinomials of the second kind, eigenvalues, linear operator pencils, non-self-adjoint matrices, spectral theory | en_US |
dc.title | On a conjecture of Davies and Levitin | en_US |
dc.type | article | en_US |
dc.relation.journal | MATHEMATICAL METHODS IN THE APPLIED SCIENCES | en_US |
dc.contributor.department | Ordu Üniversitesi | en_US |
dc.contributor.authorID | 0000-0002-4524-651X | en_US |
dc.identifier.volume | 46 | en_US |
dc.identifier.issue | 4 | en_US |
dc.identifier.startpage | 4391 | en_US |
dc.identifier.endpage | 4412 | en_US |
Appears in Collections: | Matematik |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.