Please use this identifier to cite or link to this item: http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/4440
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOzturk, Hasen Mekki-
dc.date.accessioned2024-03-15T11:13:55Z-
dc.date.available2024-03-15T11:13:55Z-
dc.date.issued2023-
dc.identifier.citationÖztürk, HM. (2023). On a conjecture of Davies and Levitin. Math. Meth. Appl. Sci., 46(4), 4391-4412. https://doi.org/10.1002/mma.8766en_US
dc.identifier.issn0170-4214-
dc.identifier.issn1099-1476-
dc.identifier.urihttp://dx.doi.org/10.1002/mma.8766-
dc.identifier.urihttps://www.webofscience.com/wos/woscc/full-record/WOS:000871215300001-
dc.identifier.urihttp://earsiv.odu.edu.tr:8080/xmlui/handle/11489/4440-
dc.descriptionWoS Categories: Mathematics, Applieden_US
dc.descriptionWeb of Science Index: Science Citation Index Expanded (SCI-EXPANDED)en_US
dc.descriptionResearch Areas: Mathematicsen_US
dc.description.abstractLet Hc$$ {H}_c $$ be a (2n)x(2n)$$ (2n)\times (2n) $$ symmetric tridiagonal matrix with diagonal elements c is an element of Double-struck capital R$$ c\in \mathbb{R} $$ and off-diagonal elements one, and S$$ S $$ be a (2n)x(2n)$$ (2n)\times (2n) $$ diagonal matrix with the first n$$ n $$ diagonal elements being plus ones and the last n$$ n $$ being minus ones. Davies and Levitin studied the eigenvalues of a linear pencil Ac=Hc-lambda S$$ {\mathcal{A}}_c={H}_c-\lambda S $$ as 2n$$ 2n $$ approaches to infinity. It was conjectured by DL that for any n is an element of N$$ n\in \mathbb{N} $$ the non-real eigenvalues lambda$$ \lambda $$ of Ac$$ {\mathcal{A}}_c $$ satisfy both |lambda+c|<2$$ \mid \lambda +c\mid and |lambda-c|<2$$ \mid \lambda -c\mid . The conjecture has been verified numerically for a wide range of n$$ n $$ and c$$ c $$, but so far the full proof is missing. The purpose of the paper is to support this conjecture with a partial proof and several numerical experiments which allow to get some insight in the behaviour of the non-real eigenvalues of Ac$$ {\mathcal{A}}_c $$. We provide a proof of the conjecture for n <= 3$$ n\le 3 $$, and also in the case where |lambda+c|=|lambda-c|$$ \mid \lambda +c\mid =\mid \lambda -c\mid $$. In addition, numerics indicate that some phenomena may occur for more general linear pencils.en_US
dc.description.sponsorshipMinistry of National Education of the Republic of Turkiyeen_US
dc.language.isoengen_US
dc.publisherWILEY-HOBOKENen_US
dc.relation.isversionof10.1002/mma.8766en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectchebyshev polinomials of the second kind, eigenvalues, linear operator pencils, non-self-adjoint matrices, spectral theoryen_US
dc.titleOn a conjecture of Davies and Levitinen_US
dc.typearticleen_US
dc.relation.journalMATHEMATICAL METHODS IN THE APPLIED SCIENCESen_US
dc.contributor.departmentOrdu Üniversitesien_US
dc.contributor.authorID0000-0002-4524-651Xen_US
dc.identifier.volume46en_US
dc.identifier.issue4en_US
dc.identifier.startpage4391en_US
dc.identifier.endpage4412en_US
Appears in Collections:Matematik

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.