Please use this identifier to cite or link to this item: http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/4287
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYucesoy, Ergun-
dc.contributor.authorNabiyev, Vasif V.-
dc.date.accessioned2024-03-15T08:37:02Z-
dc.date.available2024-03-15T08:37:02Z-
dc.date.issued2016-
dc.identifier.citationYücesoy, E., Nabiyev, VV. (2016). A new approach with score-level fusion for the classification of a speaker age and gender. Comput. Electr. Eng., 53, 29-39. https://doi.org/10.1016/j.compeleceng.2016.06.002en_US
dc.identifier.issn0045-7906-
dc.identifier.issn1879-0755-
dc.identifier.urihttp://dx.doi.org/10.1016/j.compeleceng.2016.06.002-
dc.identifier.urihttps://www.webofscience.com/wos/woscc/full-record/WOS:000385602100003-
dc.identifier.urihttp://earsiv.odu.edu.tr:8080/xmlui/handle/11489/4287-
dc.descriptionWoS Categories: Computer Science, Hardware & Architecture; Computer Science, Interdisciplinary Applications; Engineering, Electrical & Electronicen_US
dc.descriptionWeb of Science Index: Science Citation Index Expanded (SCI-EXPANDED)en_US
dc.descriptionResearch Areas: Computer Science; Engineeringen_US
dc.description.abstractIn this study a new approach for classifying speakers according to their age and genders is proposed. This approach is composed of score-level fusion of seven sub-systems. In this fused system, which provides improved performance in three classification categories (age, gender and age & gender), spectral and prosodic features extracted from short-duration phone conversations are used with Gaussian Mixture Model (GMM), Support Vector Machine (SVM) and GMM supervector-based SVM classifiers. Also, by examining individual and various combinations of each system, the effect of feature types and classification methods on performance is investigated. With the proposed system, classification success rates are obtained 90.4%, 54.1%, and 53.5% in gender, age and age & gender categories respectively. (C) 2016 Elsevier Ltd. All rights reserved.en_US
dc.language.isoengen_US
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-OXFORDen_US
dc.relation.isversionof10.1016/j.compeleceng.2016.06.002en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAge and gender recognition, Spectral features, Prosodic features, Score-level fusion, Gaussian Mixture Model, Support Vector Machinesen_US
dc.subjectRECOGNITION, EXTRACTIONen_US
dc.titleA new approach with score-level fusion for the classification of a speaker age and genderen_US
dc.typearticleen_US
dc.relation.journalCOMPUTERS & ELECTRICAL ENGINEERINGen_US
dc.contributor.departmentOrdu Üniversitesien_US
dc.contributor.authorID0000-0003-1707-384Xen_US
dc.identifier.volume53en_US
dc.identifier.startpage29en_US
dc.identifier.endpage39en_US
Appears in Collections:Makale Koleksiyonu

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.