Please use this identifier to cite or link to this item: http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/3559
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSet, Erhan-
dc.contributor.authorEkinci, Alper-
dc.date.accessioned2023-01-06T11:41:07Z-
dc.date.available2023-01-06T11:41:07Z-
dc.date.issued2021-
dc.identifier.citationSet, E., Ekinci, A. (). On some generalized integral inequalities for functions whose second derivatives in absolute values are convex. Numerical Methods For Partial Differential Equations, , -.Doi:10.1002/num.22758en_US
dc.identifier.isbn0749-159X-
dc.identifier.isbn1098-2426-
dc.identifier.urihttp://dx.doi.org/10.1002/num.22758-
dc.identifier.urihttps://www.webofscience.com/wos/woscc/full-record/WOS:000609906900001-
dc.identifier.urihttp://earsiv.odu.edu.tr:8080/xmlui/handle/11489/3559-
dc.descriptionWoS Categories : Mathematics, Applied Web of Science Index : Science Citation Index Expanded (SCI-EXPANDED) Research Areas : Mathematicsen_US
dc.description.abstractIn this article, general integral inequalities are obtained for functions whose absolute value of the second derivative is convex. These inequalities are more general versions of some results in the literature and we recaptured these results with the selection of special parameters. In the study, graphs are also used to compare the inequalities that occur with the change of the mu parameter.en_US
dc.language.isoengen_US
dc.publisherWILEY HOBOKENen_US
dc.relation.isversionof10.1002/num.22758en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectconvex function; Holder inequality; Ostrowski inequalityen_US
dc.titleOn some generalized integral inequalities for functions whose second derivatives in absolute values are convexen_US
dc.typearticleen_US
dc.relation.journalNUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONSen_US
dc.contributor.departmentOrdu Üniversitesien_US
dc.contributor.authorID0000-0003-1364-5396en_US
Appears in Collections:Matematik

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.