Please use this identifier to cite or link to this item: http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/3554
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSarihan, Ayse Guven-
dc.contributor.authorBandtlow, Oscar F.-
dc.date.accessioned2023-01-06T11:40:04Z-
dc.date.available2023-01-06T11:40:04Z-
dc.date.issued2021-
dc.identifier.citationSarihan, AG., Bandtlow, OF. (2021). Quantitative spectral perturbation theory for compact operators on a Hilbert space. Linear Algebra and Its Applications, 610, 169-202.Doi:10.1016/j.laa.2020.08.033en_US
dc.identifier.isbn0024-3795-
dc.identifier.isbn1873-1856-
dc.identifier.urihttp://dx.doi.org/10.1016/j.laa.2020.08.033-
dc.identifier.urihttps://www.webofscience.com/wos/woscc/full-record/WOS:000596321700010-
dc.identifier.urihttp://earsiv.odu.edu.tr:8080/xmlui/handle/11489/3554-
dc.descriptionWoS Categories : Mathematics, Applied; Mathematics Web of Science Index : Science Citation Index Expanded (SCI-EXPANDED) Research Areas : Mathematics Open Access Designations : Green Submitteden_US
dc.description.abstractWe introduce compactness classes of Hilbert space operators by grouping together all operators for which the associated singular values decay at a certain speed and establish upper bounds for the norm of the resolvent of operators belonging to a particular compactness class. As a consequence we obtain explicitly computable upper bounds for the Hausdorff distance of the spectra of two operators belonging to the same compactness class in terms of the distance of the two operators in operator norm. (C) 2020 Published by Elsevier Inc.en_US
dc.description.sponsorshipFunding Orgs : EPSRC [EP/R012008/1] Funding Name Preferred : EPSRC(UK Research & Innovation (UKRI)Engineering & Physical Sciences Research Council (EPSRC)) Funding Text : The research of OFB was supported by the EPSRC grant EP/R012008/1. Both authors would like to thank Titus Hilberdink and Eugene Shargorodsky for valuable feedback during the preparation of this article.en_US
dc.language.isoengen_US
dc.publisherELSEVIER SCIENCE INC NEW YORKen_US
dc.relation.isversionof10.1016/j.laa.2020.08.033en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectQuantitative spectral perturbation theory; Resolvent bounds; Departure from normality; Spectral distanceen_US
dc.titleQuantitative spectral perturbation theory for compact operators on a Hilbert spaceen_US
dc.typearticleen_US
dc.relation.journalLINEAR ALGEBRA AND ITS APPLICATIONSen_US
dc.contributor.departmentOrdu Üniversitesien_US
dc.contributor.authorID0000-0002-0828-4429en_US
dc.identifier.volume610en_US
dc.identifier.startpage169en_US
dc.identifier.endpage202en_US
Appears in Collections:Matematik

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.