Please use this identifier to cite or link to this item: http://earsiv.odu.edu.tr:8080/xmlui/handle/11489/3421
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSay, Fatih-
dc.date.accessioned2023-01-06T10:56:00Z-
dc.date.available2023-01-06T10:56:00Z-
dc.date.issued2022-
dc.identifier.citationSay, F. (2022). Recurrence relationship of successive level singulants. Mathematical Methods in the Applied Sciences, 45(5), 2508-2515.Doi:10.1002/mma.7896en_US
dc.identifier.isbn0170-4214-
dc.identifier.isbn1099-1476-
dc.identifier.urihttp://dx.doi.org/10.1002/mma.7896-
dc.identifier.urihttps://www.webofscience.com/wos/woscc/full-record/WOS:000717312300001-
dc.identifier.urihttp://earsiv.odu.edu.tr:8080/xmlui/handle/11489/3421-
dc.descriptionWoS Categories : Mathematics, Applied Web of Science Index : Science Citation Index Expanded (SCI-EXPANDED) Research Areas : Mathematicsen_US
dc.description.abstractWe study the asymptotic behaviour of the solution to a singularly perturbed model differential equation. The analytical solution is asymptotically represented by a formal power series in the perturbation parameter. This paper provides an explanation of the relation between the pre-factor functions P(z) and Q(z) and the singulants of the expansion of the general second-order singularly perturbed differential equation in higher levels of the asymptotic analysis. Exponential asymptotics typically relies upon the derivation of the singulant function as it is crucial to determine the location of the Stokes lines. By doing the careful analysis, we connect the subsequent order singulants with the previous order singulants and determine the asymptotics of the late coefficients. By this relation, one can predict and investigate the Stokes phenomenon and exponential smoothing of the equations in the form of the model differential equation.en_US
dc.language.isoengen_US
dc.publisherWILEY HOBOKENen_US
dc.relation.isversionof10.1002/mma.7896en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectSTOKES PHENOMENON; EXPONENTIAL ASYMPTOTICS; LINES; HYPERASYMPTOTICSen_US
dc.subjectasymptotic analysis; asymptotics beyond all orders; divergent series; singulant; singular perturbation; singularitiesen_US
dc.titleRecurrence relationship of successive level singulantsen_US
dc.typearticleen_US
dc.relation.journalMATHEMATICAL METHODS IN THE APPLIED SCIENCESen_US
dc.contributor.departmentOrdu Üniversitesien_US
dc.identifier.volume45en_US
dc.identifier.issue5en_US
dc.identifier.startpage2508en_US
dc.identifier.endpage2515en_US
Appears in Collections:Matematik

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.